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Abstract: Randomized unit testing deals with testing the individual software units by using the test cases 

randomly or testing randomly with the test cases. Though it is most effective of its kind, the thoroughness of 

the randomized unit testing varies based on the settings of parameters and relative frequencies which the 

methods are called. In this system two testing criteria’s are described. Primarily Genetic Algorithms are used to 

find parameters for randomized unit testing. Designing Genetic Algorithm is quite a black art, where the 

reduced Genetic Algorithm (GA) achieves almost the same results as the full system but in only 10 percent of 

time. It also uses a Feature Subset Selection tool to assess the size and content of the representations within the 

GA. Here Nighthawk – two level genetic random test data generation system is used to generate test cases 

randomly for the Unit Testing. Secondarily a general unit testing is done based on the traditional way of testing. 

After the completion of unit testing, from both the test results quality of the software is ensured by using 

control charts. The deviations in the charts of the two testing methods ensure the efficient quality evolution of 

the system. The results reinforce the belief that the testing made by these methods ensures the better quality 

than the existing system.  

  

Index Terms- Genetic, Testing, Unit, test case, randomized, nighthawk, software quality 
. 

1 Introduction 

Software testing involves running a piece of 

software (the software under test, or SUT) on 

selected input data and checking the outputs for 

correctness. The goal of software testing is to force 

failures of the SUT and to be thorough. The more 

thoroughly the SUT have been testing an SUT 

without forcing failures, It will be the reliability of 

the SUT. 

 

1.1 RANDOMIZED UNIT TESTING 

Randomized unit testing is unit testing where 

there is some randomization in the selection of the 

target method call sequence and/or arguments to the 

method calls. Many researchers have performed 

randomized unit testing, sometimes combined with 

other tools such as model checkers. A key concept 

in randomized unit testing is that of value reuse. 

This term is used to refer how the testing engine 

reuses the receiver, arguments, or return values of 

past method calls when making new method calls. 

In previous researches, value reuse has mostly taken 

the form of making a sequence of method calls all 

on the same receiver object; latest research reported 

as, value reuse on arguments and return values as 

well. Randomized testing depends on the 

generation of so many inputs that it is infeasible to 

get a human to check all test outputs. An automated 

test oracle is needed. There are two main 

approaches to the oracle problem. The first is to use 

general purpose, “high- pass” oracles that pass 

many executions but check properties that should 

be true of most software.  

 

For instance, Miller et al. [2006] judge a 

randomly generated GUI test case as failing only if 

the software crashes or hangs, despite the use of 

high-pass oracles, all of these researches found 
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randomized testing to be effective in forcing 

failures. The second approach to the oracle problem 

for randomized testing is to write oracles in order to 

check properties specific to the software. These 

oracles, like all formal unit specifications, are 

nontrivial to write; tools such as Daikon for 

automatically deriving likely invariants could help 

here. Since randomized unit testing does not use 

any intelligence to guide its search for test cases, 

there has always been justifiable concern about how 

thorough it can be, given various measures of 

thoroughness, such as coverage and fault-finding 

ability.  

Michael et al. [2005] performed 

randomized testing on the well-known Triangle 

program; this program accepts three integers as 

arguments, interprets them as sides of a triangle, 

and reports whether the triangle is equilateral, 

isosceles, scalene, or not a triangle at all. They 

concluded that randomized testing could not 

achieve 50 percent condition/decision coverage of 

the code, even after 1,000 runs.  

 

1.2 GENETIC ALGORITHM IN TESTING 

  

Genetic algorithms were first described by 

Holland. Candidate solutions are represented as 

“chromosomes,” with solutions represented as 

“genes” in the chromosomes. The possible 

chromosomes form a search space and are 

associated with a fitness function representing the 

value of solutions encoded in the chromosome. 

Search proceeds by evaluating the fitness of each of 

a population of chromosomes, and then performing 

point mutations and recombination on the 

successful chromosomes. GAs can defeat purely 

random search in finding solutions to complex 

problems. Goldberg argues that their power stems 

from being able to engage in “discovery and 

recombination of building blocks” for solutions in a 

solution space. 

 

Both of these approaches evaluate the 

fitness of a chromosome by measuring how close 

the input is to covering some desired statement or 

condition direction. Finally, the class testing 

represents the sequence of method calls in a unit test 

as a chromosome; the approach features customized 

mutation operators, such as one that inserts method 

invocations. 

 

1.3 PROBLEM STATEMENT 

Since randomized unit testing does not use 

any intelligence to guide its search for test cases, 

there has always been justifiable concern about how 

thorough it can be, given various measures of 

thoroughness, such as coverage and fault-finding 

ability. Randomized testing can be enhanced via 

randomized breadth-first search of the search space 

of possible test cases, but pruning branches that lead 

to redundant or illegal values which would cause 

the system to waste time on unproductive test cases. 

In addition, most analysis-based approaches incur 

heavy memory and processing time costs. However 

the random testing is done, it does not shows the 

quality evolution of the software.  

2. EXISTING SYSTEM 

Randomized testing uses randomization for 

some aspects of test input data selection. Several 

studies have found that randomized testing of 

software units is effective at forcing failures in even 

well-tested units. However, there remains a 

question of the thoroughness of randomized testing. 

Using various code coverage measures to measure 

thoroughness, researchers have come to varying 

conclusions about the ability of randomized testing 

to be thorough. The thoroughness of randomized 

unit testing is dependent on when and how 

randomization is applied, e.g., the number of 

method calls to make, the relative frequency with 

which different methods are called, and the ranges 

from which numeric arguments are chosen.  

 

The manner in which previously used 

arguments or previously returned values are used in 

new method calls, which we call the value reuse 

policy, is also a crucial factor. It is often difficult to 

work out the optimal values of the parameters and 

the optimal value reuse policy by hand. Later the 

testing is made the quality of testing cannot be 

calculated in any manner. Since the quality of 

testing are not projected out the evolution of 

software in the quality is still unknown. 

PROBLEM STATEMENT 

 Since randomized unit testing does not use any 

intelligence to guide its search for test cases, 

there has always been justifiable concern about 

how thorough it can be, given various measures 

of thoroughness, such as coverage and 

fault-finding ability. 

 Randomized testing can be enhanced via 

randomized breadth-first search of the search 

space of possible test cases, but pruning 

branches that lead to redundant or illegal values 

which would cause the system to waste time on 

unproductive test cases. 
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 In addition, most analysis-based approaches 

incur heavy memory and processing time costs. 

 However the random testing is done, it does not 

shows the quality evolution of the software. 

  

3. PROPOSED SYSTEM 

 

Fig. 1 System Architecture 

The project involves a unit test data generator 

named Nighthawk. Nighthawk has two levels. The 

upper level is a genetic algorithm (GA) which uses 

fitness evaluation, selection, mutation, and 

recombination of chromosomes to find good values 

for the genes. The lower level is a randomized unit 

testing engine which tests a set of methods 

according to parameter values specified as genes in 

a chromosome, including parameters that encode a 

value reuse policy.  

 

Goodness is evaluated on the basis of test 

coverage and number of method calls performed. 

Users can use Nighthawk to find good parameters, 

and then perform randomized unit testing based on 

those parameters. The randomized testing can 

quickly generate many new test cases that achieve 

high coverage and can continue to do so for as long 

as users wish to run it. After the test cases are 

generated from the generator, the testing is done for 

the chosen application on both the methods. 

Initially testing is done with the test case generated 

by the genetic algorithm based test case generator 

engine. Those results are noted down with the 

execution time of the corresponding test cases. 

Secondly the testing is done by general unit testing. 

Especially in JAVA, the jUNIT package be used for 

the testing. Then the results are compared for 

charting. By using control charts we can ensure the 

quality of the test made and the software evolution. 

 

System Framework 

 

The below figure shows the design of the 

NIGHTHAWK. The model has three stages to 

function. 

Stage 1: Random values are seeded into the value 

pools for primitive types such as int, according to 

bounds in the pools.  

Stage 2: Values are seeded into non primitive type 

classes that have initializer constructors by calling 

those constructors.  

 

Fig. 2 Design of NIGHTAWK 

Stage 3: The rest of the test case is constructed and 

run by repeatedly randomly choosing a method and 

receiver and parameter values. Each method call 

may result in a return value which is placed back 

into a value pool (not shown). 

 

4 GENETIC ALGORITHM LEVEL 

The system uses the space of possible 

chromosomes as a solution space to search, and 

apply the GA approach to search it for a good 

solution. It chose GAs over other meta heuristic 

approaches such as simulated annealing because it’s 

a belief that recombining parts of successful 

chromosomes would result in chromosomes that are 

better than their parents. However, other meta 

heuristic approaches may have other advantages 

and should be explored in future work. The 

parameter to Nighthawk’s GA is the set M of target 

methods. The GA performs the usual chromosome 

evaluation steps (fitness selection, mutation, and 

recombination). The GA derives an initial template 

chromosome appropriate to M, constructs an initial 

population of size p as clones of this chromosome, 

and mutates the population. It then loops for the 

desired number g of generations, of evaluating each 

chromosome’s fitness, retaining the fittest 

chromosomes, discarding the rest, cloning the fit 

chromosomes, and mutating the genes of the clones 
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with probability m percent using point mutations 

and crossover (exchange of genes between 

chromosomes). The evaluation of the fitness of each 

chromosome c proceeds as follows: The random 

testing level of Nighthawk generates and runs a test 

case, using the parameters encoded in c. It then 

collects the number of lines covered by the test case. 

If it bases the fitness function only on coverage, 

then any chromosome would benefit from having a 

larger number of method calls and test cases since 

every new method call has the potential of covering 

more code. Nighthawk therefore calculates the 

fitness of the chromosome as: 

(Number of coverage points covered) * 

(coverage factor) = (number of method calls 

performed overall). 
 

The coverage factor sets to 1,000, meaning that 

the system is willing to make 1,000 more method 

calls (but not more) if that means covering one more 

coverage point. For the three variables mentioned 

above, Nighthawk uses default settings of p ¼ 20; g 

¼ 50;m ¼ 20. These settings are different from 

those taken as standard in GA literature, and are 

motivated by a need to do as few chromosome 

evaluations as possible (the primary cost driver of 

the system). The population size p and the number 

of generations g are smaller than standard, resulting 

in fewer chromosome evaluations; to compensate 

for the lack of diversity in the population that would 

otherwise result, the mutation rate m is larger. The 

settings of other variables, such as the retention 

percentage, are consistent with the literature. 

 

To enhance availability of the software, 

Nighthawk uses the popular open source coverage 

tool Cobertura to measure coverage. Cobertura can 

measure only line coverage (each coverage point 

corresponds to a source code line and is covered if 

any code on the line is executed). However, 

Nighthawk’s algorithm is not specific to this 

measure. 

Generating Data Sets: 

 

Fig.3 Description Tool for Data set alignment 

 

Fig. 4 XML Datasets 

 

 

 

subset selection (FSS) tool to assess the  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.5 Coverage Measure 

Fig.6 Cobertura Execution Time 
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5. CONCLUSION 

 
Randomized unit testing is a superior 

technology that has been shown to be effective, but 

whose thoroughness depends on the settings of test 

algorithm parameters. In the system, Nighthawk, a 

system in which an upper level genetic algorithm 

automatically derives good parameter values for a 

lower level randomized unit test algorithm. It had 

been shown that Nighthawk is able to achieve high 

coverage of complex, real-world Java units, while 

retaining the most desirable feature of randomized 

testing: the ability to generate many new 

high-coverage test cases quickly. The control charts 

are used to evaluate the quality ensured after the test 

has been made.  This system can be enhanced in 

the future by taking the huge databases for testing 

and the reduction of the complexity in handling the 

application data. Future work also includes the 

integration into Nighthawk of useful facilities from 

past systems, such as failure-preserving or 

coverage-preserving test case minimization. 

Integration of a feature subset selection learner into 

the GA level of the Nighthawk algorithm for 

dynamic optimization of the GA is also possible. 
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