Innovative Science and Technology Publications

International Journal of Future Innovative Science and Technology,
ISSN: 2454- 194X Volume-3, Issue-1, Jan - 2017

A GENETIC TOOL BASED RANDOMIZED UNIT TESTING
FOR ENSURING QUALITY SOFTWARE

Baskaran.P

Assistant Professor,
Department of CSE,
SNS College of Engineering,
Coimbatore, TamilNadu, India.

E-Mail: baskarcseO6@gmail.com

Jan — 2017

www.istpublications.com

Baskaran.P,” A Genetic Tool Based Randomized Unit Testing For Ensuring Quality Software*, International
Journal of Future Innovative Science and Technology (1JFIST), Volume-3, Issue-1, Jan - 2017, Page- 5

http://www.istpublications.com/

@ International Journal of Future Innovative Science and Technology, ISSN: 2454- 194X, Volume-3, Issue-1, Jan - 2017

Received: Sep-2016 Revised: Oct-2016 Accepted:Dec-2016 Published:Jan-2017

A GENETIC TOOL BASED RANDOMIZED UNIT TESTING FOR
ENSURING QUALITY SOFTWARE

Baskaran.P

Assistant Professor,
Department of CSE,
SNS College of Engineering,
Coimbatore, TamilNadu, India.

E-Mail: baskarcse06@gmail.com

Abstract: Randomized unit testing deals with testing the individual software units by using the test cases
randomly or testing randomly with the test cases. Though it is most effective of its kind, the thoroughness of
the randomized unit testing varies based on the settings of parameters and relative frequencies which the
methods are called. In this system two testing criteria’s are described. Primarily Genetic Algorithms are used to
find parameters for randomized unit testing. Designing Genetic Algorithm is quite a black art, where the
reduced Genetic Algorithm (GA) achieves almost the same results as the full system but in only 10 percent of
time. It also uses a Feature Subset Selection tool to assess the size and content of the representations within the
GA. Here Nighthawk — two level genetic random test data generation system is used to generate test cases
randomly for the Unit Testing. Secondarily a general unit testing is done based on the traditional way of testing.
After the completion of unit testing, from both the test results quality of the software is ensured by using
control charts. The deviations in the charts of the two testing methods ensure the efficient quality evolution of
the system. The results reinforce the belief that the testing made by these methods ensures the better quality
than the existing system.

Index Terms- Genetic, Testing, Unit, test case, randomized, nighthawk, software quality

reuses the receiver, arguments, or return values of
past method calls when making new method calls.
In previous researches, value reuse has mostly taken
the form of making a sequence of method calls all
on the same receiver object; latest research reported
as, value reuse on arguments and return values as
well. Randomized testing depends on the

1 Introduction

Software testing involves running a piece of
software (the software under test, or SUT) on
selected input data and checking the outputs for
correctness. The goal of software testing is to force
failures of the SUT and to be thorough. The more
thoroughly the SUT have been testing an SUT

without forcing failures, It will be the reliability of
the SUT.

1.1 RANDOMIZED UNIT TESTING
Randomized unit testing is unit testing where
there is some randomization in the selection of the
target method call sequence and/or arguments to the
method calls. Many researchers have performed
randomized unit testing, sometimes combined with
other tools such as model checkers. A key concept
in randomized unit testing is that of value reuse.
This term is used to refer how the testing engine

generation of so many inputs that it is infeasible to
get a human to check all test outputs. An automated
test oracle is needed. There are two main
approaches to the oracle problem. The first is to use
general purpose, “high- pass” oracles that pass
many executions but check properties that should
be true of most software.

For instance, Miller et al. [2006] judge a
randomly generated GUI test case as failing only if
the software crashes or hangs, despite the use of
high-pass oracles, all of these researches found

Baskaran.P, ” A Genetic Tool Based Randomized Unit Testing For Ensuring Quality Software®, International Journal of
Future Innovative Science and Technology (IJFIST), Volume-3, Issue-1, Jan - 2017, Page- 6

®)

International Journal of Future Innovative Science and Technology, ISSN: 2454- 194X, Volume-3, Issue-1, Jan - 2017

randomized testing to be effective in forcing
failures. The second approach to the oracle problem
for randomized testing is to write oracles in order to
check properties specific to the software. These
oracles, like all formal unit specifications, are
nontrivial to write; tools such as Daikon for
automatically deriving likely invariants could help
here. Since randomized unit testing does not use
any intelligence to guide its search for test cases,
there has always been justifiable concern about how
thorough it can be, given various measures of
thoroughness, such as coverage and fault-finding
ability.

Michael et al. [2005] performed
randomized testing on the well-known Triangle
program; this program accepts three integers as
arguments, interprets them as sides of a triangle,
and reports whether the triangle is equilateral,
isosceles, scalene, or not a triangle at all. They
concluded that randomized testing could not
achieve 50 percent condition/decision coverage of
the code, even after 1,000 runs.

1.2 GENETIC ALGORITHM IN TESTING

Genetic algorithms were first described by
Holland. Candidate solutions are represented as
“chromosomes,” with solutions represented as
“genes” in the chromosomes. The possible
chromosomes form a search space and are
associated with a fitness function representing the
value of solutions encoded in the chromosome.
Search proceeds by evaluating the fitness of each of
a population of chromosomes, and then performing
point mutations and recombination on the
successful chromosomes. GAs can defeat purely
random search in finding solutions to complex
problems. Goldberg argues that their power stems
from being able to engage in “discovery and
recombination of building blocks” for solutions in a
solution space.

Both of these approaches evaluate the
fitness of a chromosome by measuring how close
the input is to covering some desired statement or
condition direction. Finally, the class testing
represents the sequence of method calls in a unit test
as a chromosome; the approach features customized
mutation operators, such as one that inserts method
invocations.

1.3 PROBLEM STATEMENT

Since randomized unit testing does not use
any intelligence to guide its search for test cases,
there has always been justifiable concern about how
thorough it can be, given various measures of

thoroughness, such as coverage and fault-finding
ability. Randomized testing can be enhanced via
randomized breadth-first search of the search space
of possible test cases, but pruning branches that lead
to redundant or illegal values which would cause
the system to waste time on unproductive test cases.
In addition, most analysis-based approaches incur
heavy memory and processing time costs. However
the random testing is done, it does not shows the
quality evolution of the software.

2. EXISTING SYSTEM

Randomized testing uses randomization for
some aspects of test input data selection. Several
studies have found that randomized testing of
software units is effective at forcing failures in even
well-tested units. However, there remains a
question of the thoroughness of randomized testing.
Using various code coverage measures to measure
thoroughness, researchers have come to varying
conclusions about the ability of randomized testing
to be thorough. The thoroughness of randomized
unit testing is dependent on when and how
randomization is applied, e.g., the number of
method calls to make, the relative frequency with
which different methods are called, and the ranges
from which numeric arguments are chosen.

The manner in which previously used
arguments or previously returned values are used in
new method calls, which we call the value reuse
policy, is also a crucial factor. It is often difficult to
work out the optimal values of the parameters and
the optimal value reuse policy by hand. Later the
testing is made the quality of testing cannot be
calculated in any manner. Since the quality of
testing are not projected out the evolution of
software in the quality is still unknown.

PROBLEM STATEMENT
e Since randomized unit testing does not use any

intelligence to guide its search for test cases,
there has always been justifiable concern about
how thorough it can be, given various measures
of thoroughness, such as coverage and
fault-finding ability.

e Randomized testing can be enhanced via
randomized breadth-first search of the search
space of possible test cases, but pruning
branches that lead to redundant or illegal values
which would cause the system to waste time on
unproductive test cases.

Baskaran.P, ” A Genetic Tool Based Randomized Unit Testing For Ensuring Quality Software®, International Journal of
Future Innovative Science and Technology (IJFIST), Volume-3, Issue-1, Jan - 2017, Page- 7

e In addition, most analysis-based approaches
incur heavy memory and processing time costs.

e However the random testing is done, it does not
shows the quality evolution of the software.

3. PROPOSED SYSTEM

Top Level Application

. /
LEVELY Y LEVEL 2

Java
Ut ——

Classes

Value Reuse Policy

Based GA FSS Tool Based GA

|
|
|
|
|
Test
cases I cases
|
|
|
|

UNIT TESTING

T ~ X
———— ——

VERSION VERSION
1 cc 2
(Goodness of Fit)

Fig. 1 System Architecture

The project involves a unit test data generator
named Nighthawk. Nighthawk has two levels. The
upper level is a genetic algorithm (GA) which uses
fitness evaluation, selection, mutation, and
recombination of chromosomes to find good values
for the genes. The lower level is a randomized unit
testing engine which tests a set of methods
according to parameter values specified as genes in
a chromosome, including parameters that encode a
value reuse policy.

I-
i
i
I
|
D Test
i
i
!
l UNIT TESTING

—— ==

Goodness is evaluated on the basis of test
coverage and number of method calls performed.
Users can use Nighthawk to find good parameters,
and then perform randomized unit testing based on
those parameters. The randomized testing can
quickly generate many new test cases that achieve
high coverage and can continue to do so for as long
as users wish to run it. After the test cases are
generated from the generator, the testing is done for
the chosen application on both the methods.
Initially testing is done with the test case generated
by the genetic algorithm based test case generator
engine. Those results are noted down with the
execution time of the corresponding test cases.
Secondly the testing is done by general unit testing.
Especially in JAVA, the jUNIT package be used for
the testing. Then the results are compared for
charting. By using control charts we can ensure the
guality of the test made and the software evolution.

@ International Journal of Future Innovative Science and Technology, ISSN: 2454- 194X, Volume-3, Issue-1, Jan - 2017

System Framework

The below figure shows the design of the
NIGHTHAWK. The model has three stages to
function.

Stage 1: Random values are seeded into the value
pools for primitive types such as int, according to
bounds in the pools.

Stage 2: Values are seeded into non primitive type
classes that have initializer constructors by calling
those constructors.

Fig. 2 Design of NIGHTAWK

int TreeMap
1) 2)
Value ... Value Value ... Value
pool 1 pooli

pool 1 poolj

3) t.put(k,v);

?

Stage 3: The rest of the test case is constructed and
run by repeatedly randomly choosing a method and
receiver and parameter values. Each method call
may result in a return value which is placed back
into a value pool (not shown).

4 GENETIC ALGORITHM LEVEL

The system uses the space of possible
chromosomes as a solution space to search, and
apply the GA approach to search it for a good
solution. It chose GAs over other meta heuristic
approaches such as simulated annealing because it’s
a belief that recombining parts of successful
chromosomes would result in chromosomes that are
better than their parents. However, other meta
heuristic approaches may have other advantages
and should be explored in future work. The
parameter to Nighthawk’s GA is the set M of target
methods. The GA performs the usual chromosome
evaluation steps (fitness selection, mutation, and
recombination). The GA derives an initial template
chromosome appropriate to M, constructs an initial
population of size p as clones of this chromosome,
and mutates the population. It then loops for the
desired number g of generations, of evaluating each
chromosome’s fitness, retaining the fittest
chromosomes, discarding the rest, cloning the fit
chromosomes, and mutating the genes of the clones

Baskaran.P, ” A Genetic Tool Based Randomized Unit Testing For Ensuring Quality Software®, International Journal of
Future Innovative Science and Technology (IJFIST), Volume-3, Issue-1, Jan - 2017, Page- 8

®)

International Journal of Future Innovative Science and Technology, ISSN: 2454- 194X, Volume-3, Issue-1, Jan - 2017

with probability m percent using point mutations
and crossover (exchange of genes between
chromosomes). The evaluation of the fitness of each
chromosome ¢ proceeds as follows: The random
testing level of Nighthawk generates and runs a test
case, using the parameters encoded in c. It then
collects the number of lines covered by the test case.
If it bases the fitness function only on coverage,
then any chromosome would benefit from having a
larger number of method calls and test cases since
every new method call has the potential of covering
more code. Nighthawk therefore calculates the
fitness of the chromosome as:

(Number of coverage points covered) *
(coverage factor) = (number of method calls
performed overall).

The coverage factor sets to 1,000, meaning that
the system is willing to make 1,000 more method
calls (but not more) if that means covering one more
coverage point. For the three variables mentioned
above, Nighthawk uses default settings of p % 20; g
Y4 50;m Y 20. These settings are different from
those taken as standard in GA literature, and are
motivated by a need to do as few chromosome
evaluations as possible (the primary cost driver of
the system). The population size p and the number
of generations g are smaller than standard, resulting
in fewer chromosome evaluations; to compensate
for the lack of diversity in the population that would
otherwise result, the mutation rate m is larger. The
settings of other variables, such as the retention
percentage, are consistent with the literature.

To enhance availability of the software,
Nighthawk uses the popular open source coverage
tool Cobertura to measure coverage. Cobertura can
measure only line coverage (each coverage point
corresponds to a source code line and is covered if
any code on the line is executed). However,
Nighthawk’s algorithm is not specific to this
measure.

Generating Data Sets:

Baskaran.P, ” A Genetic Tool Based Randomized Unit Testing For Ensuring Quality Software®, International Journal of

Fig.3 Description Tool for Data set alignment

.- [ofx)
File R Toots Reports Help DaftaSet
Code Set Browsel Rosult
@ rselli) X
UML, XML Source Generated
Generate Dataset
Bsare
=) (5] [| B8] fou pata
Fesa pe: [aries .
Fig. 4 XML Datasets
| £| Time For Generation l = iz-]
Execution Time
1.75
1.50
1.25
=
c
g 1,00
Q
075
0,50
0.25
0,00
Execution ti... Execution ti...
Time
W Time Taken
Fig.5 Coverage Measure
Py

|£| Exceution Process = | B

Executed Method Count

w
=

o noo b

Count
w

N i 1 ¥
[

» tn o U

Mormal meth... Exceptional meth...

Methods

W Execution

Fig.6 Cobertura Execution Time

Future Innovative Science and Technology (IJFIST), Volume-3, Issue-1, Jan - 2017, Page- 9

5. CONCLUSION

Randomized unit testing is a superior
technology that has been shown to be effective, but
whose thoroughness depends on the settings of test
algorithm parameters. In the system, Nighthawk, a
system in which an upper level genetic algorithm
automatically derives good parameter values for a
lower level randomized unit test algorithm. It had
been shown that Nighthawk is able to achieve high
coverage of complex, real-world Java units, while
retaining the most desirable feature of randomized
testing: the ability to generate many new
high-coverage test cases quickly. The control charts
are used to evaluate the quality ensured after the test
has been made. This system can be enhanced in
the future by taking the huge databases for testing
and the reduction of the complexity in handling the
application data. Future work also includes the
integration into Nighthawk of useful facilities from
past systems, such as failure-preserving or
coverage-preserving test case minimization.
Integration of a feature subset selection learner into
the GA level of the Nighthawk algorithm for
dynamic optimization of the GA is also possible.

REFERENCES

[1] J.H. Andrews, S. Haldar, Y. Lei, and C.H.F. Li,
“Tool Support for Randomized Unit
Testing,” Proc. First Int’l Workshop
Randomized Testing, pp. 36-45, July 2006.

[2] J. Andrews and T. Menzies, “On the Value of
Combining Feature Subset Selection with
Genetic Algorithms: Faster Learning of
Coverage Models,” Proc. Fifth Int’l Conf.
Predictor Models in Software Eng.,
http://menzies.us/pdf/09fssga.pdf, 2009.

[3] EJ. Weyuker, “On Testing Non-Testable
Programs,” The Computer J., vol. 25, no.
4, pp. 465-470, Nov. 1982.

[4] WK. Leow, S.C. Khoo, and Y. Sun,
“Automated Generation of Test Programs from
Closed Specifications of Classes and Test
Cases,” Proc. 26th Int’l Conf. Software Eng.,
pp. 96-105, May 2004.

[5] J.H. Andrews and Y. Zhang, “General Test
Result Checking with Log File Analysis,” IEEE
Trans. Software Eng., vol. 29, no. 7, pp.
634-648, July 2003.

@ International Journal of Future Innovative Science and Technology, ISSN: 2454- 194X, Volume-3, Issue-1, Jan - 2017

[6] L.A. Clarke, “A System to Generate Test Data
and Symbolically Execute Programs,” IEEE
Trans. Software Eng., vol. 2, no. 3, pp. 215-222,
Sept. 1976.

[7] Periyasamy, Baskaran, and R. Ashok kumar. "A
Combined Model with Test Prioritizing for
Testing an Event Driven Software." American
Journal of Software Engineering 3.1 (2015):
1-5.

[8] 1. Kononenko, “Estimating Attributes: Analysis
and Extensions of Relief,” Proc. Seventh
European Conf. Machine Learning. pp.
171-182, 1994.

[9]1 S. Berner, R. Weber, and R.K. Keller,
“Enhancing Software Testing by Judicious use
of Code Coverage Information,” Proc. 29th
Int’l Conf. Software Eng., pp. 612-620, May
2007.

[10] W.C. Hetzel, ed., Program Test Methods,

Prentice-Hall, 1973.

[11] R. Hamlet, “Random Testing,” Encyclopedia
of Software Eng., Wiley,pp. 970-978, 1994.

[12] P. Tonella, “Evolutionary Testing of Classes,”
Proc. ACM/SIGSOFT Int’l Symp. Software
Testing and Analysis, pp. 119-128, July 2004.

[13] K. Kira and L. Rendell, “A Practical Approach
to Feature Selection,” Proc. Ninth Int’l Conf.
Machine Learning, pp. 249-256, 1992.

[14] C. Csallner and Y. Smaragdakis, “JCrasher:
An Automatic Robustness Tester for Java,”
Software Practice and Experience, vol. 34, no.
11, pp. 1025-1050, 2004.

[15] M.D. Ernst, J. Cockrell, W.G. Griswold, and D.
Notkin, “Dynamically Discovering Likely
Program Invariants to Support Program
Evolution,” IEEE Trans. Software Eng., vol.
27, no. 2, pp. 99-123, Feb. 2001.

[16] Ciupa, A. Leitner, M. Oriol, and B. Meyer,
“Artoo: Adaptive Random Testing for
Object-Oriented Software,” Proc. 30th
ACM/IEEE Int’l Conf. Software Eng., pp.
71-80, May 2008.

[17] S. Vaucher et al., “Tracking Design Smells:
Lessons from a Study of God Classes,” Proc.
16th Working Conf. Reverse Eng. (WCRE 09),
IEEE CS Press, 2009, pp. 145-154.

[18] S. Kan, Metrics and Models in Software
Quiality Engineering, Addison- Wesley, 2003.

Baskaran.P, ” A Genetic Tool Based Randomized Unit Testing For Ensuring Quality Software®, International Journal of
Future Innovative Science and Technology (IJFIST), Volume-3, Issue-1, Jan - 2017, Page- 10

