

Baskaran.P,” A Genetic Tool Based Randomized Unit Testing For Ensuring Quality Software“, International

Journal of Future Innovative Science and Technology (IJFIST), Volume-3, Issue-1, Jan - 2017, Page- 5

Innovative Science and Technology Publications

 International Journal of Future Innovative Science and Technology,

ISSN: 2454- 194X Volume-3, Issue-1, Jan - 2017

Baskaran.P

Assistant Professor,

Department of CSE,

SNS College of Engineering,

Coimbatore, TamilNadu, India.

E-Mail: baskarcse06@gmail.com

Jan – 2017

www.istpublications.com

A GENETIC TOOL BASED RANDOMIZED UNIT TESTING

FOR ENSURING QUALITY SOFTWARE

http://www.istpublications.com/

 International Journal of Future Innovative Science and Technology, ISSN: 2454- 194X, Volume-3, Issue-1, Jan - 2017

Baskaran.P, ” A Genetic Tool Based Randomized Unit Testing For Ensuring Quality Software“, International Journal of

Future Innovative Science and Technology (IJFIST), Volume-3, Issue-1, Jan - 2017, Page- 6

Received: Sep-2016 Revised: Oct-2016 Accepted:Dec-2016 Published:Jan-2017

A GENETIC TOOL BASED RANDOMIZED UNIT TESTING FOR

ENSURING QUALITY SOFTWARE

Baskaran.P

Assistant Professor,

Department of CSE,

SNS College of Engineering,

Coimbatore, TamilNadu, India.

E-Mail: baskarcse06@gmail.com

Abstract: Randomized unit testing deals with testing the individual software units by using the test cases

randomly or testing randomly with the test cases. Though it is most effective of its kind, the thoroughness of

the randomized unit testing varies based on the settings of parameters and relative frequencies which the

methods are called. In this system two testing criteria’s are described. Primarily Genetic Algorithms are used to

find parameters for randomized unit testing. Designing Genetic Algorithm is quite a black art, where the

reduced Genetic Algorithm (GA) achieves almost the same results as the full system but in only 10 percent of

time. It also uses a Feature Subset Selection tool to assess the size and content of the representations within the

GA. Here Nighthawk – two level genetic random test data generation system is used to generate test cases

randomly for the Unit Testing. Secondarily a general unit testing is done based on the traditional way of testing.

After the completion of unit testing, from both the test results quality of the software is ensured by using

control charts. The deviations in the charts of the two testing methods ensure the efficient quality evolution of

the system. The results reinforce the belief that the testing made by these methods ensures the better quality

than the existing system.

Index Terms- Genetic, Testing, Unit, test case, randomized, nighthawk, software quality
.

1 Introduction

Software testing involves running a piece of

software (the software under test, or SUT) on

selected input data and checking the outputs for

correctness. The goal of software testing is to force

failures of the SUT and to be thorough. The more

thoroughly the SUT have been testing an SUT

without forcing failures, It will be the reliability of

the SUT.

1.1 RANDOMIZED UNIT TESTING

Randomized unit testing is unit testing where

there is some randomization in the selection of the

target method call sequence and/or arguments to the

method calls. Many researchers have performed

randomized unit testing, sometimes combined with

other tools such as model checkers. A key concept

in randomized unit testing is that of value reuse.

This term is used to refer how the testing engine

reuses the receiver, arguments, or return values of

past method calls when making new method calls.

In previous researches, value reuse has mostly taken

the form of making a sequence of method calls all

on the same receiver object; latest research reported

as, value reuse on arguments and return values as

well. Randomized testing depends on the

generation of so many inputs that it is infeasible to

get a human to check all test outputs. An automated

test oracle is needed. There are two main

approaches to the oracle problem. The first is to use

general purpose, “high- pass” oracles that pass

many executions but check properties that should

be true of most software.

For instance, Miller et al. [2006] judge a

randomly generated GUI test case as failing only if

the software crashes or hangs, despite the use of

high-pass oracles, all of these researches found

International Journal of Future Innovative Science and Technology, ISSN: 2454- 194X, Volume-3, Issue-1, Jan - 2017

Baskaran.P, ” A Genetic Tool Based Randomized Unit Testing For Ensuring Quality Software“, International Journal of

Future Innovative Science and Technology (IJFIST), Volume-3, Issue-1, Jan - 2017, Page- 7

randomized testing to be effective in forcing

failures. The second approach to the oracle problem

for randomized testing is to write oracles in order to

check properties specific to the software. These

oracles, like all formal unit specifications, are

nontrivial to write; tools such as Daikon for

automatically deriving likely invariants could help

here. Since randomized unit testing does not use

any intelligence to guide its search for test cases,

there has always been justifiable concern about how

thorough it can be, given various measures of

thoroughness, such as coverage and fault-finding

ability.

Michael et al. [2005] performed

randomized testing on the well-known Triangle

program; this program accepts three integers as

arguments, interprets them as sides of a triangle,

and reports whether the triangle is equilateral,

isosceles, scalene, or not a triangle at all. They

concluded that randomized testing could not

achieve 50 percent condition/decision coverage of

the code, even after 1,000 runs.

1.2 GENETIC ALGORITHM IN TESTING

Genetic algorithms were first described by

Holland. Candidate solutions are represented as

“chromosomes,” with solutions represented as

“genes” in the chromosomes. The possible

chromosomes form a search space and are

associated with a fitness function representing the

value of solutions encoded in the chromosome.

Search proceeds by evaluating the fitness of each of

a population of chromosomes, and then performing

point mutations and recombination on the

successful chromosomes. GAs can defeat purely

random search in finding solutions to complex

problems. Goldberg argues that their power stems

from being able to engage in “discovery and

recombination of building blocks” for solutions in a

solution space.

Both of these approaches evaluate the

fitness of a chromosome by measuring how close

the input is to covering some desired statement or

condition direction. Finally, the class testing

represents the sequence of method calls in a unit test

as a chromosome; the approach features customized

mutation operators, such as one that inserts method

invocations.

1.3 PROBLEM STATEMENT

Since randomized unit testing does not use

any intelligence to guide its search for test cases,

there has always been justifiable concern about how

thorough it can be, given various measures of

thoroughness, such as coverage and fault-finding

ability. Randomized testing can be enhanced via

randomized breadth-first search of the search space

of possible test cases, but pruning branches that lead

to redundant or illegal values which would cause

the system to waste time on unproductive test cases.

In addition, most analysis-based approaches incur

heavy memory and processing time costs. However

the random testing is done, it does not shows the

quality evolution of the software.

2. EXISTING SYSTEM

Randomized testing uses randomization for

some aspects of test input data selection. Several

studies have found that randomized testing of

software units is effective at forcing failures in even

well-tested units. However, there remains a

question of the thoroughness of randomized testing.

Using various code coverage measures to measure

thoroughness, researchers have come to varying

conclusions about the ability of randomized testing

to be thorough. The thoroughness of randomized

unit testing is dependent on when and how

randomization is applied, e.g., the number of

method calls to make, the relative frequency with

which different methods are called, and the ranges

from which numeric arguments are chosen.

The manner in which previously used

arguments or previously returned values are used in

new method calls, which we call the value reuse

policy, is also a crucial factor. It is often difficult to

work out the optimal values of the parameters and

the optimal value reuse policy by hand. Later the

testing is made the quality of testing cannot be

calculated in any manner. Since the quality of

testing are not projected out the evolution of

software in the quality is still unknown.

PROBLEM STATEMENT

 Since randomized unit testing does not use any

intelligence to guide its search for test cases,

there has always been justifiable concern about

how thorough it can be, given various measures

of thoroughness, such as coverage and

fault-finding ability.

 Randomized testing can be enhanced via

randomized breadth-first search of the search

space of possible test cases, but pruning

branches that lead to redundant or illegal values

which would cause the system to waste time on

unproductive test cases.

 International Journal of Future Innovative Science and Technology, ISSN: 2454- 194X, Volume-3, Issue-1, Jan - 2017

Baskaran.P, ” A Genetic Tool Based Randomized Unit Testing For Ensuring Quality Software“, International Journal of

Future Innovative Science and Technology (IJFIST), Volume-3, Issue-1, Jan - 2017, Page- 8

 In addition, most analysis-based approaches

incur heavy memory and processing time costs.

 However the random testing is done, it does not

shows the quality evolution of the software.

3. PROPOSED SYSTEM

Fig. 1 System Architecture

The project involves a unit test data generator

named Nighthawk. Nighthawk has two levels. The

upper level is a genetic algorithm (GA) which uses

fitness evaluation, selection, mutation, and

recombination of chromosomes to find good values

for the genes. The lower level is a randomized unit

testing engine which tests a set of methods

according to parameter values specified as genes in

a chromosome, including parameters that encode a

value reuse policy.

Goodness is evaluated on the basis of test

coverage and number of method calls performed.

Users can use Nighthawk to find good parameters,

and then perform randomized unit testing based on

those parameters. The randomized testing can

quickly generate many new test cases that achieve

high coverage and can continue to do so for as long

as users wish to run it. After the test cases are

generated from the generator, the testing is done for

the chosen application on both the methods.

Initially testing is done with the test case generated

by the genetic algorithm based test case generator

engine. Those results are noted down with the

execution time of the corresponding test cases.

Secondly the testing is done by general unit testing.

Especially in JAVA, the jUNIT package be used for

the testing. Then the results are compared for

charting. By using control charts we can ensure the

quality of the test made and the software evolution.

System Framework

The below figure shows the design of the

NIGHTHAWK. The model has three stages to

function.

Stage 1: Random values are seeded into the value

pools for primitive types such as int, according to

bounds in the pools.

Stage 2: Values are seeded into non primitive type

classes that have initializer constructors by calling

those constructors.

Fig. 2 Design of NIGHTAWK

Stage 3: The rest of the test case is constructed and

run by repeatedly randomly choosing a method and

receiver and parameter values. Each method call

may result in a return value which is placed back

into a value pool (not shown).

4 GENETIC ALGORITHM LEVEL

The system uses the space of possible

chromosomes as a solution space to search, and

apply the GA approach to search it for a good

solution. It chose GAs over other meta heuristic

approaches such as simulated annealing because it’s

a belief that recombining parts of successful

chromosomes would result in chromosomes that are

better than their parents. However, other meta

heuristic approaches may have other advantages

and should be explored in future work. The

parameter to Nighthawk’s GA is the set M of target

methods. The GA performs the usual chromosome

evaluation steps (fitness selection, mutation, and

recombination). The GA derives an initial template

chromosome appropriate to M, constructs an initial

population of size p as clones of this chromosome,

and mutates the population. It then loops for the

desired number g of generations, of evaluating each

chromosome’s fitness, retaining the fittest

chromosomes, discarding the rest, cloning the fit

chromosomes, and mutating the genes of the clones

International Journal of Future Innovative Science and Technology, ISSN: 2454- 194X, Volume-3, Issue-1, Jan - 2017

Baskaran.P, ” A Genetic Tool Based Randomized Unit Testing For Ensuring Quality Software“, International Journal of

Future Innovative Science and Technology (IJFIST), Volume-3, Issue-1, Jan - 2017, Page- 9

with probability m percent using point mutations

and crossover (exchange of genes between

chromosomes). The evaluation of the fitness of each

chromosome c proceeds as follows: The random

testing level of Nighthawk generates and runs a test

case, using the parameters encoded in c. It then

collects the number of lines covered by the test case.

If it bases the fitness function only on coverage,

then any chromosome would benefit from having a

larger number of method calls and test cases since

every new method call has the potential of covering

more code. Nighthawk therefore calculates the

fitness of the chromosome as:

(Number of coverage points covered) *

(coverage factor) = (number of method calls

performed overall).

The coverage factor sets to 1,000, meaning that

the system is willing to make 1,000 more method

calls (but not more) if that means covering one more

coverage point. For the three variables mentioned

above, Nighthawk uses default settings of p ¼ 20; g

¼ 50;m ¼ 20. These settings are different from

those taken as standard in GA literature, and are

motivated by a need to do as few chromosome

evaluations as possible (the primary cost driver of

the system). The population size p and the number

of generations g are smaller than standard, resulting

in fewer chromosome evaluations; to compensate

for the lack of diversity in the population that would

otherwise result, the mutation rate m is larger. The

settings of other variables, such as the retention

percentage, are consistent with the literature.

To enhance availability of the software,

Nighthawk uses the popular open source coverage

tool Cobertura to measure coverage. Cobertura can

measure only line coverage (each coverage point

corresponds to a source code line and is covered if

any code on the line is executed). However,

Nighthawk’s algorithm is not specific to this

measure.

Generating Data Sets:

Fig.3 Description Tool for Data set alignment

Fig. 4 XML Datasets

subset selection (FSS) tool to assess the

Fig.5 Coverage Measure

Fig.6 Cobertura Execution Time

 International Journal of Future Innovative Science and Technology, ISSN: 2454- 194X, Volume-3, Issue-1, Jan - 2017

Baskaran.P, ” A Genetic Tool Based Randomized Unit Testing For Ensuring Quality Software“, International Journal of

Future Innovative Science and Technology (IJFIST), Volume-3, Issue-1, Jan - 2017, Page- 10

5. CONCLUSION

Randomized unit testing is a superior

technology that has been shown to be effective, but

whose thoroughness depends on the settings of test

algorithm parameters. In the system, Nighthawk, a

system in which an upper level genetic algorithm

automatically derives good parameter values for a

lower level randomized unit test algorithm. It had

been shown that Nighthawk is able to achieve high

coverage of complex, real-world Java units, while

retaining the most desirable feature of randomized

testing: the ability to generate many new

high-coverage test cases quickly. The control charts

are used to evaluate the quality ensured after the test

has been made. This system can be enhanced in

the future by taking the huge databases for testing

and the reduction of the complexity in handling the

application data. Future work also includes the

integration into Nighthawk of useful facilities from

past systems, such as failure-preserving or

coverage-preserving test case minimization.

Integration of a feature subset selection learner into

the GA level of the Nighthawk algorithm for

dynamic optimization of the GA is also possible.

REFERENCES

[1] J.H. Andrews, S. Haldar, Y. Lei, and C.H.F. Li,

“Tool Support for Randomized Unit

Testing,” Proc. First Int’l Workshop

Randomized Testing, pp. 36-45, July 2006.

[2] J. Andrews and T. Menzies, “On the Value of

Combining Feature Subset Selection with

Genetic Algorithms: Faster Learning of

Coverage Models,” Proc. Fifth Int’l Conf.

Predictor Models in Software Eng.,

http://menzies.us/pdf/09fssga.pdf, 2009.

[3] E.J. Weyuker, “On Testing Non-Testable

Programs,” The Computer J., vol. 25, no.

4, pp. 465-470, Nov. 1982.

[4] W.K. Leow, S.C. Khoo, and Y. Sun,

“Automated Generation of Test Programs from

Closed Specifications of Classes and Test

Cases,” Proc. 26th Int’l Conf. Software Eng.,

pp. 96-105, May 2004.

[5] J.H. Andrews and Y. Zhang, “General Test

Result Checking with Log File Analysis,” IEEE

Trans. Software Eng., vol. 29, no. 7, pp.

634-648, July 2003.

[6] L.A. Clarke, “A System to Generate Test Data

and Symbolically Execute Programs,” IEEE

Trans. Software Eng., vol. 2, no. 3, pp. 215-222,

Sept. 1976.

[7] Periyasamy, Baskaran, and R. Ashok kumar. "A

Combined Model with Test Prioritizing for

Testing an Event Driven Software." American

Journal of Software Engineering 3.1 (2015):

1-5.

[8] I. Kononenko, “Estimating Attributes: Analysis

and Extensions of Relief,” Proc. Seventh

European Conf. Machine Learning. pp.

171-182, 1994.

[9] S. Berner, R. Weber, and R.K. Keller,

“Enhancing Software Testing by Judicious use

of Code Coverage Information,” Proc. 29th

Int’l Conf. Software Eng., pp. 612-620, May

2007.

[10] W.C. Hetzel, ed., Program Test Methods,

Prentice-Hall, 1973.

[11] R. Hamlet, “Random Testing,” Encyclopedia

of Software Eng., Wiley,pp. 970-978, 1994.

[12] P. Tonella, “Evolutionary Testing of Classes,”

Proc. ACM/SIGSOFT Int’l Symp. Software

Testing and Analysis, pp. 119-128, July 2004.

[13] K. Kira and L. Rendell, “A Practical Approach

to Feature Selection,” Proc. Ninth Int’l Conf.

Machine Learning, pp. 249-256, 1992.

[14] C. Csallner and Y. Smaragdakis, “JCrasher:

An Automatic Robustness Tester for Java,”

Software Practice and Experience, vol. 34, no.

11, pp. 1025-1050, 2004.

[15] M.D. Ernst, J. Cockrell, W.G. Griswold, and D.

Notkin, “Dynamically Discovering Likely

Program Invariants to Support Program

Evolution,” IEEE Trans. Software Eng., vol.

27, no. 2, pp. 99-123, Feb. 2001.

[16] Ciupa, A. Leitner, M. Oriol, and B. Meyer,

“Artoo: Adaptive Random Testing for

Object-Oriented Software,” Proc. 30th

ACM/IEEE Int’l Conf. Software Eng., pp.

71-80, May 2008.

[17] S. Vaucher et al., “Tracking Design Smells:

Lessons from a Study of God Classes,” Proc.

16th Working Conf. Reverse Eng. (WCRE 09),

IEEE CS Press, 2009, pp. 145–154.

[18] S. Kan, Metrics and Models in Software

Quality Engineering, Addison- Wesley, 2003.

