
Page - 25

Innovative Science and Technology Publications

PERFORMANCE ANALYSIS OF DATA MINING TECHNIQUES FOR HIGH

UTILITY PATTERNS DISCOVERY

V. Baby Dr. N. K. Sakthivel
Computer Science and Engineering Computer Science and Engineering

Nehru College of Engineering and Research Centre Nehru College of Engineering and Research Centre

Pampady, Thiruvilwamala, Thrissur, Kerala Pampady, Thiruvilwamala, Thrissur, Kerala

 babyvellayudhan@gmail.com vp@ncerc.ac.in

May – 2016

www.istpublications.com

Manuscript Title

mailto:babyvellayudhan@gmail.com
mailto:vp@ncerc.ac.in
http://www.istpublications.com/

 International Journal of Future Innovative Science and Technology, ISSN: 2454- 194X
Volume-2, Issue-2, May - 2016 editor@istpublications.com

Page - 26

Performance Analysis of Data Mining

Techniques for High Utility Patterns

Discovery

V. Baby Dr. N. K. Sakthivel
Computer Science and Engineering Computer Science and Engineering

Nehru College of Engineering and Research Centre Nehru College of Engineering and Research Centre

Pampady, Thiruvilwamala, Thrissur, Kerala Pampady, Thiruvilwamala, Thrissur, Kerala

 babyvellayudhan@gmail.com vp@ncerc.ac.in

ABSTRACT

Discovery of High Utility Itemsets(HUI) or pattern from database is very useful in processing business. By defining a tight upper

bound on the utility of candidates more conservative pruning can be achieved. High Utility Pattern growth pruning space by

searching a reverse set enumeration tree with utility upper bounding is used in the direct discovery of high utility patterns. User can

get concise HUIs by using Closed HUI.

Keywords- High utility pattern, closed high utility itemset, utility mining, lossless and concise representation, pattern mining

1. INTRODUCTION

Utility in high utility means importance,

interestingness or profitability of the items or pattern

whatever the business need. Comprehension will be

very difficult for the users if the algorithm gives a large

number of high utility patterns. Candidate pattern’s

Transaction Weighted Utilization (TWU) [2][5][7] is

the transaction’s utility sum.

Simplifying the utility calculation and reducing the

number of candidates depends the success of high

utility pattern mining. The search space can be better

pruned by specifying a tighter upper bound. Pruning

search space can be done either Pruning Before

Candidate Generation (PBCG) or Pruning After

Candidate Generation (PACG).

High Utility Pattern (HUP) [2][9][10] finds itemsets in

single phase. TWU patterns are not generating in HUP.

Original Utility is represented by using CAUL [2] data

structure. High Utility itemsets which have the closed

itemset [1] property is closed high utility itemset

discovery. It finds less number of itemsets than any

other algorithms. If we are considering the number of

itemset then CHUD [1][6] is best.

2. RECENTLY PROPOSED HIGH UTILITY

ITESET MINING TECHNIQUES

Identified recently proposed techniques as the Direct

Discovery of High Utility Patterns [2] and the Closed

High Utility Patterns [1] and those are the techniques

for mining High utility Itemsets.

2.1 ONE SLOT GENERATION OF HUI

A linear list data structure “Chain of Accurate Utility

Lists (CAUL) enables the efficient calculation of utility

and estimation of tight utility upper bound. It uses

reverse set enumeration tree [2]. There will be an

imposed ordering Ω [2] in the tree and root does not

contain anything, other nodes are labeled by an item.

The path from the node to the root node is the pattern.

Child nodes of particular node are the items listed

before.

Algorithm 1: Direct Discovery of HighUtilityPattern

1 Construct transaction set which contains the

 Pattern and ordering and external utility

2 Reverse set enumeration tree root

3 DFS(node, transaction set of the pattern,

minimum Utility, given ordering)

Subroutine:DFS (node, transaction set of the pattern,

 Minimum Utility, given ordering)

4 if utility of pattern of node≥ minimum utility

then output pattern of the node

mailto:babyvellayudhan@gmail.com
mailto:vp@ncerc.ac.in

 International Journal of Future Innovative Science and Technology, ISSN: 2454- 194X
Volume-2, Issue-2, May - 2016 editor@istpublications.com

Page - 27

5 W←{i|i<pattern of node and the utility sum of

full prefix extension of the transactions(union

of {i}and pattern of node)≥ minimum utility

6 if closure (pattern of node, W, minimum

utility) is Satisfied

7 then output nonempty subsets of WUpattern

of node

8 else if singleton(pattern of node,W, minimum

utility) is satisfied

9 then output WU pattern of node as a HUP

10 else foreach item i є W in Ω do

11 if basic upper bound ≥minimum utility

12 then C← the child node of the current node

for i

13 transaction set of pattern of node←project

(transaction set of pattern of the current node,

i)

14 DFS(C, transaction set(pattern of C, minimum

utility,Ω)

15 end foreach

Closure is defined as for pattern X and set W of items

with X intersection W is a null set, the utility of (S U

X) ≥ minimum utility, for all S (is a subset or equal to

W) and S is not a null set. If the minimum utility ≤

utility of W union X which is less than the sum of

minimum utility and the sum of the utility of the item

in w included in the transaction set of X then utility S

union X < minimum utility for all S, subset of W. This

property is known as Singletone.

For calculating the utilities and upper bound of prefix

extension of pattern CAUL is used. It contains two

division utility list and summary table. All the items in

transaction t which is relevant in growing prefix

extension of pattern the utility is stored in the utility

list. For each distinct relevant item j to grow the prefix

extension of pattern an entry is maintained in the

summary table. It is denoted as quintuple, summary[j]

= (support[j], utility[j],sum of full prefix extension of

{j} union pattern of the current node,

Algorithm 2: PsudoProject(CAUL of pattern of P,i)

1 foreach relevant item j < i do

2 summary[j]←0

3 end foreach

4 foreach utility list t threaded by link[i] do

5 utility of pattern of N ← utility of pattern of

 P + utility of i in transaction t

6 calculate sum for all transaction together

7 foreach relevant item j belongs to t and j < I

 by Ω do

8 s[j]←s[j]+1

9 u[j]←u[j]+utility of j in t+utility of pattern of

 node N in transaction t

10 sum ← sum + utility of j in t

11 basic upper bound for j ← basic upper

bound

 for j + sum

12 end foreach

13 foreach relevant item j belongs to t and j < i

by Ω do

14 sum of full prefix itemsetof j ← sum of full

prefix itemset of j + sum

15 thread t into the chain by link[j]

16 end foreach

17 end foreach

basic upper bound, link[j]). Basic upper bound for a

pattern X is the sum of the utility of the full prefix

extension of X with respect to each transaction in the

transaction set. In the utility list the occurrences of the

same item are linked by a chain threading that is the

link[j].

CAUL of a pattern in the transaction set is calculated

efficiently by using pseudo projection [4]. In the

reverse enumeration tree node N and its parent node P,

pattern of N = {i} union pattern of parent. CAUL keeps

the original utility information for each transaction.

CAUL can determine whether X is a high utility

pattern before X is enumerated. Currently being

enumerated pattern only keeps in main memory. The

optimization is done by considering γ as the maximum

number of rounds for irrelevant item filtering and ø for

materialization threshold for space-time tradeoff.

2.2 CLOSED HUI DISCOVERY

An itemset is closed if there is no superset which has

same support count. A high utility itemset is closed if

there should not be any proper superset having the

same utility. CHUD is an efficient depth-first search

algorithm. It uses Itemset - TidsetpairTree(IT-Tree)

[1][8] to find CHUIs. Each node consists of an itemset

X, Tidset g(X), two ordered sets of items PREV-

SET(X) and POST-SET(X) and estimated utility. The

 International Journal of Future Innovative Science and Technology, ISSN: 2454- 194X
Volume-2, Issue-2, May - 2016 editor@istpublications.com

Page - 28

TU-Table stores the transaction utility with transaction

id.

CHUD [1] first scans the database and convert into a

vertical database. While creating vertical database, it

creates a global TU-Table. Promising items are stored

in an ordered list like an increasing order of support at

the same time unpromising items are removed from the

global TU-Table [1]. From single promising item,

CHUD generates candidates by recursively joining

items to the existing for forming larger candidates. For

each item ak in O, CHUD creates a node and items a1 to

ak-1 into PREV-SET({ak}) and items ak+1 to an into

POST-SET({ak}).

ALGORITHM: CHUD

Input: D: the database;absolute minimum utility

Output: complete set of CHUIs

01. InitialDatabaseScan(D)

02 RemoveUtilityUnpromisingItems(O, GTU)

03 foreach item ak belongs Odo

 04 {Create node for ak

05 CHUD_Phase-I(node for ak,GTU,absolute

minimum utility)

06 Removing the Exact utilities of items from

the Global TU-Table

07 CHUD_Phase-II(D,absolute minimum utility

Phase I produce all the candidates containing the item

ak but no item ai < ak , then Removing the Exact utilities

of items from the Global TU-Table. In Phase II

absolute utility of pattern is no less than the absolute

minimum utility then the pattern is outputted as CHUI

then removes the isolated items of level k. CHUD

discovered items are not maintained in the main

memory, directly the item is outputted after that it will

discard candidates with maximum item utility less than

the minimum utility threshold. A candidate can be

discarded from Phase II if its estimated utility[1] or

maximum item utility is less than the absolute utility

[1].

Phase-I of CHUD find the complete set of potential

CHUIs. If the set X is not subsumed by other itemsets

then closure of X, discarding candidate with the

maximum item utility of each calculated. Phase-I

explore the superset of X by appending items from

POST-SET(X) to X which forms the search space of

closed candidates for the second phase. So CHUD gets

a very less number of HUIs in Phase-I.

Phase-II gets inputs as promising item’s database,

potential CHUIs and absolute minimum utility and

produces all CHUIs by calculating absolute utility for

X and is greater than that of absolute minimum utility

then the set X is outputted. In CHUD, the exact utilities

of items were removed from the Global TU-Table, the

minimum item utility of an item of items were

removed from the Local TU Table, the maximum item

utility of an item candidates were discarded, these are

the strategies used.

3. IMPLEMENTATION OF D2HUP AND CHUD

Techniques D2HUP and CHUD were implemented in

Java by using the datasets Foodmart, Mushroom, retail

those are described in Table 1.

TABLE 1. DATASET CHARECTERISTICS

The datasets used for implementation include

Foodmart, Mushroom and Retail as shown in the Table

1. Example for the sparse dataset is Foodmart.

Example for dense dataset is Mushroom. Both are real

life data sets. Retail is mixed dataset. Algorithms were

executed in Windows 8.1 operating system and Intel i3

processor at 1.7GHz. So many datasets like BMS,

Connect, Chess, Accident, Kosarak, pumsb utilities

have been used for testing. In those D2HUP was taking

a long time for output, but CHUD has shown output

within seconds. First started running by giving utility

values like 10000, 5000, 1000 then identified the

maximum utility for each dataset and taken 1%,

10%, 80% of the maximum utility as the minimum

utility.

4. RESULTS AND PERFORMANCE ANALYSIS

Table 1. Shows sample outputs got by running with the

three real life datasets by setting the minimum utility as

1%, 10% and 80%. If the minimum utility is low, then

the CHUD gives a very less number of patterns. Of

Mushroom which is a dense data set it gets almost

Dataset #Transactions
#Distinct

items

Avg.trans.

length

Foodmart 4141 1559 4.4

Mushroom 8124 119 23

Retail 5133 16470 13

 International Journal of Future Innovative Science and Technology, ISSN: 2454- 194X
Volume-2, Issue-2, May - 2016 editor@istpublications.com

Page - 29

5000 times less number of itemsets than D2HUP. It

means that much of repeated utilities with itemsets are

available with D2HUP. So if the user wants less

number of itemset then CHUD is the best technique. It

will be efficient for the requirement of business

calculations. When the utility is high, then both

algorithms are performing almost equally, with the

Mushroom dataset it gives again almost 190 times

lesser numbers of itemsets.

The three parameters analyzed with the three datasets

include the number of HUI derived, the memory usage

and the execution time of the techniques. The memory

usage is high

TABLE 2. SAMPLE OUTPUT

M
in

.U
ti

l

it
y
 Data

set
Technique

Parameters

HUI

count

Mem.

(MB)

Time

(Sec.)

1%

Foodm
art

D2HUP 233180 17.5 1.37

CHUD 6679 13.32 5.9

Retail
D2HUP 3311 114.23 3.6

CHUD 3098 239.02 601

Mushr

oom

D2HUP
5395201

09
28.29 1608.19

CHUD 107103 12.9 52.8

10%

Foodm

art

D2HUP 113663 11.2 1.45

CHUD 4474 7.82 4.7

Retail
D2HUP 51 50.71 3.73

CHUD 51 72.62 3.73

Mushr
oom

D2HUP 5234758 27.97 124.73

CHUD 13447 10.57 34.2

80%

Foodm

art

D2HUP 11 6.7 0.09

CHUD 11 14.46 1.6

Retail

D2HUP 2 18.36 1.04

CHUD 2 14.4 1.34

Mushr
oom

D2HUP 757 24.45 1.18

CHUD 4 10.79 4.16

for D2HUP with the Foodmart as well as the

Mushroom dataset. Only for Retail CHUD took more

memory. When the minimum utility is 1%. For

Foodmart when the utility is high that is about 80%

CHUD took more memory. For Mushroom CHUD

took two times less memory than the D2HUP.Mining

itemsets without repetition is very important and it will

help the managers reduce the workload for identifying

the selling items with more profit. Closed items are less

in number and it doesn't contain the repeated itemsets

so for finding the unique high utility itemsets CHUD is

very useful. The direct discovery of high utility

patterns finds more itemsets than Closed HUI

discovery. In all datasets CHUD displays the less

number or equal to D2HUP. Closed Itemsets will not

be having a superset with the same utility that is why

CHUD is always retrieving less number of high utility

itemsets.

a) Foodmart

b) Mushroom

c) Retail

0

50000

100000

150000

200000

250000

0.01 0.1 0.8

H
U

I
C

O
U

N
T

Minimum Utility(%)

CHUD

D2HUP

0

100000000

200000000

300000000

400000000

500000000

600000000

0.01 0.1 0.8

H
U

I
C

O
U

N
T

Minimum Utility(%)

CHUD

D2HUP

0

1000

2000

3000

4000

0.01 0.1 0.8

H
U

I
C

O
U

N
T

Minimum Utility(%)

CHUD

D2HUP

 International Journal of Future Innovative Science and Technology, ISSN: 2454- 194X
Volume-2, Issue-2, May - 2016 editor@istpublications.com

Page - 30

Fig. 1. HUI count vs. Minimum Utility(%)

The time taken for the execution is less with CHUD for

dense dataset like Mushroom and it is very less for the

less value of the minimum utility. For Mushroom

CHUD is 30 times faster than D2HUP and for retail

D2HUP is performing well than CHUD. If we want to

retrieve high utility itemset in the dense large dataset,

then for less number of itemsets those contributing

more to the profit CHUD is the best solution. For big

dataset like BMS, Connect, which have high values as

the item utility then also CHUD is the best.

a) Foodmart

b) Mushroom

c) Retail

Fig. 2.Memory Usage vs. Minimum Utility(%)

a) Foodmart

b) Mushroom

c) Retail

Fig. 3. Execution time vs. Minimum Utility(%)

5. CONCLUSION AND FUTURE WORK

Mining by specifying the minimum utility is very

difficult for the users because users may not be

knowing the highest utility so users have to do trial and

error in getting the desired result and it is time taking

and sometimes they will not get the desired result, so

for that user can specify the number of results or the

number of patters or itemsets they want for example K.

Mining top-k high utility itemsets[3] will be more

useful so the future work is for implementing top-k

CHUD.

0

5

10

15

20

0.01 0.1 0.8

M
em

o
ry

 U
sa

g
e(

M
B

)

 Minimum Utility(%)

CHUD

D2HUP

0

10

20

30

0.01 0.1 0.8

M
em

o
ry

 U
sa

g
e(

M
B

)

Minimum Utility(%)

CHUD
D2HUP

0

50

100

150

200

250

300

0.01 0.1 0.8

M
em

o
ry

 U
sa

g
e(

M
B

)

Minimum Utility(%)

CHUD

D2HUP

0

1

2

3

4

5

6

7

0.01 0.1 0.8

E
x
ec

u
ti

o
n

 T
im

e(
S

ec
o
n

d
s)

Minimum Utility(%)

CHUD

D2HUP

0

500

1000

1500

2000

0.01 0.1 0.8

E
x
ec

u
ti

o
n

 T
im

e(
S

ec
o
n

d
s)

Minimum Utility(%)

CHUD

D2HUP

0

200

400

600

800

0.01 0.1 0.8

E
x
ec

u
ti

o
n

T
im

e(
S

ec
o

n
d

s)

Minimum Utility(%)

CHUD

D2HUP

 International Journal of Future Innovative Science and Technology, ISSN: 2454- 194X
Volume-2, Issue-2, May - 2016 editor@istpublications.com

Page - 31

REFERENCES

[1] . Vincent S. Tseng, Cheng-Wei Wu, Philippe Fournier-Viger,

and Philip S. Yu, “Efficient Algorithms for Mining the

Concise and Lossless Representation of High Utility

Itemsets,” IEEE Trans. Knowl. Data Eng.,vol. 27, no. 3, pp.

726– 739, Mar. 2015.

[2] . Junqiang Liu, Ke Wang, and Benjamin C.M. Fung, “Mining

High Utility Patterns in One Phase without Generating

Candidates,” IEEE Trans. Knowl. Data Eng,

DOI10.1109/TKDE.2015

[3] . Vincent S. Tseng, Cheng-Wei Wu, Philippe Fournier-

Viger,and Philip S. Yu, “Efficient Algorithms for Mining

Top-K High Utility Itemsets,” IEEE Trans. Knowl. Data

Eng., DOI10.1109/TKDE.2015.

[4] . G.-C. Lan, T.-P. Hong, and V. S. Tseng, “An efficient

projection based indexing approach for mining high utility

itemsets,”KAIS, vol. 38, no. 1, pp. 85–107, 2014.

[5] . V. S. Tseng, C.-W. Wu, B.-E.Shie, and P. S. Yu, “UP-

Growth: An efficient algorithm for high utility itemset

mining,” in Proc. ACMSIGKDD Int. Conf. Knowl. Discov.

Data Mining, 2010, pp. 253–262.

[6] . C.-W Wu, P. Fournier-Viger, P. S. Yu, and V. S. Tseng,

“Efficient mining of a concise and lossless representation of

high utility itemsets,” in Proc. IEEE Int. Conf. Data Mining,

2011, pp. 824–833.

[7] . V. S. Tseng, B.-E.Shie, C.-W. Wu, and P. S. Yu, “Efficient

algorithms for mining high utility itemsets from transactional

databases,” IEEE TKDE, vol. 25, no. 8, pp. 1772–1786, 2013.

[8] . C.-W. Lin, T.-P. Hong, and W.-H. Lu, “An effective tree

structure for mining high utility itemsets,” Expert Syst. Appl.,

vol. 38, no. 6, pp 7419–7424, 2011.

[9] . M. Liu and J. Qu, “Mining high utility itemsets without

candidate generation,” in CIKM. ACM, 2012, pp. 55–64.

[10] . J. Liu, K. Wang, and B. Fung, “Direct discovery of high

utility Itemsets without candidate generation,” in ICDM.

IEEE, 2012, pp. 984–989.

