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ABSTRACT 

Discovery of High Utility Itemsets(HUI) or pattern from database is very useful in processing business. By defining a tight upper 

bound on the utility of candidates more conservative pruning can be achieved. High Utility Pattern growth pruning space by 

searching a reverse set enumeration tree with utility upper bounding is used in the direct discovery of high utility patterns. User can 

get concise HUIs by using Closed HUI.  
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1. INTRODUCTION 

Utility in high utility means importance, 

interestingness or profitability of the items or pattern 

whatever the business need. Comprehension will be 

very difficult for the users if the algorithm gives a large 

number of high utility patterns. Candidate pattern’s 

Transaction Weighted Utilization (TWU) [2][5][7] is 

the transaction’s utility sum. 

Simplifying the utility calculation and reducing the 

number of candidates depends the success of high 

utility pattern mining. The search space can be better 

pruned by specifying a tighter upper bound. Pruning 

search space can be done either Pruning Before 

Candidate Generation (PBCG) or Pruning After 

Candidate Generation (PACG). 

High Utility Pattern (HUP) [2][9][10] finds itemsets in 

single phase. TWU patterns are not generating in HUP. 

Original Utility is represented by using CAUL [2] data 

structure. High Utility itemsets which have the closed 

itemset [1] property is closed high utility itemset 

discovery. It finds less number of itemsets than any 

other algorithms. If we are considering the  number of 

itemset then CHUD [1][6] is best. 

2. RECENTLY PROPOSED HIGH UTILITY 

ITESET MINING TECHNIQUES 

Identified recently proposed techniques as the Direct 

Discovery of High Utility Patterns [2] and the Closed 

High Utility Patterns [1] and those are the techniques 

for mining High utility Itemsets. 

2.1 ONE SLOT GENERATION OF HUI 

A linear list data structure “Chain of  Accurate Utility 

Lists (CAUL) enables the efficient calculation of utility 

and estimation of tight utility upper bound. It uses 

reverse set enumeration tree [2]. There will be an 

imposed ordering Ω [2] in the tree and root does not 

contain anything, other nodes are labeled by an item. 

The path from the node to the root node is the pattern. 

Child nodes of particular node are the items listed 

before. 

Algorithm 1: Direct Discovery of HighUtilityPattern  

 

1 Construct transaction set which contains the           

               Pattern and ordering and external utility 

2  Reverse set enumeration tree root  

3  DFS(node, transaction set of the pattern, 

minimum     Utility, given ordering) 

 

Subroutine:DFS (node, transaction set of the pattern,  

 Minimum Utility, given ordering) 

 

4  if utility of pattern of node≥ minimum utility 

then output pattern of the node 
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5   W←{i|i<pattern of node and the utility sum of 

full prefix extension of the transactions(union 

of {i}and pattern of node)≥ minimum utility 

6 if closure (pattern of node, W, minimum 

utility) is Satisfied 

7 then output nonempty subsets of WUpattern 

of node 

8   else if singleton(pattern of node,W, minimum 

utility) is satisfied 

9   then output WU pattern of node as a HUP 

10  else foreach item i є W in Ω do 

11 if  basic upper bound ≥minimum utility 

12 then C← the child node of the current node 

for i  

13 transaction set of  pattern of  node←project 

(transaction set of pattern of the current node, 

i) 

14 DFS(C, transaction set(pattern of C, minimum 

utility,Ω) 

15 end foreach 

Closure is defined as for pattern X and set W of items 

with X intersection W is a null set, the utility of  (S U 

X) ≥ minimum utility, for all S ( is a subset or equal to 

W) and S is not a null set. If the minimum utility ≤ 

utility of W union X which is less than the sum of 

minimum utility and the sum of the utility of the item 

in w included in the transaction set of X then utility S 

union X < minimum utility for all S, subset of W. This 

property is known as Singletone. 

For calculating the utilities and upper bound of prefix 

extension of pattern CAUL is used. It contains two 

division utility list and summary table. All the items in 

transaction t which is relevant in growing prefix 

extension of pattern the utility is stored in the utility 

list. For each distinct relevant item j to grow the prefix 

extension of pattern an entry is maintained in the 

summary table. It is denoted as quintuple, summary[j] 

= (support[j], utility[j],sum of full prefix extension of 

{j} union pattern of the current node, 

 

Algorithm 2: PsudoProject(CAUL of pattern of P,i) 

1 foreach relevant item j < i do 

2 summary[j]←0  

3 end foreach 

4 foreach utility list t threaded by link[i] do 

5 utility of pattern of  N ← utility of  pattern of  

 P + utility of  i in transaction t 

6 calculate sum for all transaction together 

7 foreach relevant item j belongs to t and j < I  

 by Ω do 

8 s[j]←s[j]+1 

9 u[j]←u[j]+utility of j in t+utility of pattern of  

 node N in transaction t 

10 sum ← sum + utility of j in t 

11 basic upper bound for j ← basic upper       

bound 

 for j + sum 

12 end foreach 

13 foreach relevant item j belongs to t and j < i 

by Ω do 

14 sum of full prefix itemsetof  j ←  sum of full 

prefix itemset of  j + sum 

15 thread t into the chain by link[j] 

16 end foreach 

17 end foreach 

 

basic upper bound, link[j]). Basic upper bound for a 

pattern X is the sum of the utility of the full prefix 

extension of X with respect to each transaction in the 

transaction set. In the utility list the occurrences of the 

same item are linked by a chain threading that is the 

link[j]. 

CAUL of a pattern in the transaction set is calculated 

efficiently by using pseudo projection [4]. In the 

reverse enumeration tree node N and its parent node P, 

pattern of N = {i} union pattern of parent. CAUL keeps 

the original utility information for each transaction. 

CAUL can determine whether X is a high utility 

pattern before X is enumerated. Currently being 

enumerated pattern only keeps in main memory. The 

optimization is done by considering γ as the maximum 

number of rounds for irrelevant item filtering and ø for 

materialization threshold for space-time tradeoff. 

2.2  CLOSED HUI DISCOVERY 

An itemset is closed if there is no superset which has 

same support count. A high utility itemset is closed if 

there should not be any proper superset having the 

same utility. CHUD is an efficient depth-first search 

algorithm. It uses Itemset - TidsetpairTree(IT-Tree) 

[1][8] to find CHUIs. Each node consists of an itemset  

X, Tidset g(X), two ordered sets of items PREV-

SET(X) and POST-SET(X) and estimated utility. The 
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TU-Table stores the transaction utility with transaction 

id. 

CHUD [1] first scans the database and convert into a 

vertical database. While creating vertical database, it 

creates a global TU-Table. Promising items are stored 

in an ordered list like an increasing order of support at 

the same time unpromising items are removed from the 

global TU-Table [1]. From single promising item, 

CHUD generates candidates by recursively joining 

items to the existing for forming larger candidates. For 

each item ak in O,  CHUD creates a node and items a1 to 

ak-1 into PREV-SET({ak}) and items ak+1 to an into 

POST-SET({ak}).  

ALGORITHM: CHUD 

Input: D: the database;absolute minimum utility 

Output: complete set of CHUIs 

01.  InitialDatabaseScan(D) 

02 RemoveUtilityUnpromisingItems(O, GTU) 

03 foreach item ak belongs Odo 

 04 {Create node for ak 

05 CHUD_Phase-I(node for ak,GTU,absolute 

minimum utility) 

06 Removing the Exact utilities of items from 

the Global TU-Table 

07 CHUD_Phase-II(D,absolute minimum utility 

 

Phase I produce all the candidates containing the item 

ak but no item ai < ak , then Removing the Exact utilities 

of items from the Global TU-Table. In Phase II 

absolute utility of pattern is no less than the absolute 

minimum utility then the pattern is outputted as CHUI 

then removes the isolated items of level k. CHUD 

discovered items are not maintained in the main 

memory, directly the item is outputted after that it will 

discard candidates with maximum item utility less than 

the minimum utility threshold. A candidate can be 

discarded from Phase II if its estimated utility[1] or 

maximum item utility is less than the absolute utility 

[1]. 

Phase-I of CHUD find the complete set of potential 

CHUIs. If the set X is not subsumed by other itemsets 

then closure of X, discarding candidate with the 

maximum item utility of each calculated. Phase-I 

explore the superset of X by appending items from 

POST-SET(X) to X which forms the search space of 

closed candidates for the second phase. So CHUD gets 

a very less number of HUIs in Phase-I. 

Phase-II gets inputs as promising item’s database, 

potential CHUIs and absolute minimum utility and 

produces all CHUIs by calculating absolute utility for 

X and is greater than that of absolute minimum utility 

then the set X is outputted. In CHUD, the exact utilities 

of items were removed from the Global TU-Table, the 

minimum item utility of an item of items were 

removed from the Local TU Table, the maximum item 

utility of an item candidates were discarded, these are 

the strategies used. 

3. IMPLEMENTATION OF D2HUP AND CHUD 

 

Techniques D2HUP and CHUD were implemented in 

Java by using the datasets Foodmart, Mushroom, retail 

those are described in Table 1. 

TABLE 1. DATASET CHARECTERISTICS 

The datasets used for implementation include 

Foodmart, Mushroom and Retail as shown in the Table 

1. Example for the sparse dataset is Foodmart. 

Example for dense dataset is Mushroom. Both are real 

life data sets. Retail is mixed dataset. Algorithms were 

executed in Windows 8.1 operating system and Intel i3 

processor at 1.7GHz. So many datasets like BMS, 

Connect, Chess, Accident, Kosarak, pumsb utilities 

have been used for testing. In those D2HUP was taking 

a long time for  output, but CHUD has shown output 

within seconds. First started running by giving utility 

values like 10000, 5000, 1000 then identified the 

maximum utility for each dataset and taken     1%, 

10%, 80% of the maximum utility as the minimum 

utility. 

4. RESULTS AND PERFORMANCE ANALYSIS 

Table 1. Shows sample outputs got by running with the 

three real life datasets by setting the minimum utility as 

1%, 10% and 80%. If the minimum utility is low, then 

the CHUD gives a very less number of patterns. Of 

Mushroom which is a dense data set it gets almost 

Dataset #Transactions 
#Distinct 

items 

Avg.trans. 

length 

Foodmart 4141 1559 4.4 

Mushroom 8124 119 23 

Retail 5133 16470 13 
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5000 times less number of itemsets than D2HUP. It 

means that much of repeated utilities with itemsets are 

available with D2HUP. So if the user wants less 

number of itemset then CHUD is the best technique. It 

will be efficient for the requirement of business 

calculations. When the utility is high, then both 

algorithms are performing almost equally, with the 

Mushroom dataset it gives again almost 190 times 

lesser numbers of itemsets. 

The three parameters analyzed with the three datasets 

include the number of HUI derived, the memory usage 

and the execution time of the techniques. The memory 

usage is high 

TABLE 2. SAMPLE OUTPUT 

M
in

.U
ti

l

it
y
 Data 

set 
Technique 

Parameters 

 

HUI 

count 

Mem. 

(MB) 

Time 

(Sec.) 

 

 
 

1% 

Foodm
art 

D2HUP 233180 17.5 1.37 

CHUD 6679 13.32 5.9 

Retail 
D2HUP 3311 114.23 3.6 

CHUD 3098 239.02 601 

Mushr

oom 

D2HUP 
5395201

09 
28.29 1608.19 

CHUD 107103 12.9 52.8 

 
 

 

10% 

Foodm

art 

D2HUP 113663 11.2 1.45 

CHUD 4474 7.82 4.7 

Retail 
D2HUP 51 50.71 3.73 

CHUD 51 72.62 3.73 

Mushr
oom 

D2HUP 5234758 27.97 124.73 

CHUD 13447 10.57 34.2 

 

 
 

80% 

Foodm

art 

D2HUP 11 6.7 0.09 

CHUD 11 14.46 1.6 

 

Retail 

D2HUP 2 18.36 1.04 

CHUD 2 14.4 1.34 

Mushr
oom 

D2HUP 757 24.45 1.18 

CHUD 4 10.79 4.16 

 

for D2HUP with the Foodmart as well as the 

Mushroom dataset. Only for Retail CHUD took more 

memory. When the minimum utility is 1%. For 

Foodmart when the utility is high that is about 80% 

CHUD took more memory. For Mushroom CHUD 

took two times less memory than the D2HUP.Mining 

itemsets without repetition is very important and it will 

help the managers reduce the workload for identifying 

the selling items with more profit. Closed items are less 

in number and it doesn't contain the repeated itemsets 

so for finding the unique high utility itemsets CHUD is 

very useful. The direct discovery of high utility 

patterns finds more itemsets than Closed HUI 

discovery. In all datasets CHUD displays the less 

number or equal to D2HUP. Closed Itemsets will not 

be having a superset with the same utility that is why 

CHUD is always retrieving less number of high utility 

itemsets. 

  

 
 

a) Foodmart 

 

b) Mushroom 

 

c) Retail 
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Fig. 1. HUI count vs. Minimum Utility(%) 

The time taken for the execution is less with CHUD for 

dense dataset like Mushroom and it is very less for the 

less value of the minimum utility. For Mushroom 

CHUD is 30 times faster than D2HUP and for retail 

D2HUP is performing well than CHUD. If we want to 

retrieve high utility itemset in the dense large dataset, 

then for less number of itemsets those contributing 

more to the profit CHUD is the best solution. For big 

dataset like BMS, Connect, which have high values as 

the item utility then also CHUD is the best.  

 

a) Foodmart 

 

b) Mushroom 

 

c) Retail 

Fig. 2.Memory Usage vs. Minimum Utility(%) 

 

a) Foodmart 

 

b) Mushroom 

 

c) Retail 

Fig. 3. Execution time vs. Minimum Utility(%) 

5. CONCLUSION AND FUTURE WORK 

Mining by specifying the minimum utility is very 

difficult for the users because users may not be 

knowing the highest utility so users have to do trial and 

error in getting the desired result and it is time taking 

and sometimes they will not get the desired result, so 

for that user can specify the number of results or the 

number of patters or itemsets they want for example K. 

Mining top-k high utility itemsets[3] will be more 

useful so the future work is for implementing top-k 

CHUD. 
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