Innovative Science and Technology Publications

International Journal of Future Innovative Science and Technology
ISSN: 2454- 194K Volume - 2, Issue - 2

Manuscript Title

PERFORMANCE ANALYSIS OF DATA MINING TECHNIQUES FOR HIGH
UTILITY PATTERNS DISCOVERY

V. Baby Dr. N. K. Sakthivel
Computer Science and Engineering Computer Science and Engineering
Nehru College of Engineering and Research Centre Nehru College of Engineering and Research Centre
Pampady, Thiruvilwamala, Thrissur, Kerala Pampady, Thiruvilwamala, Thrissur, Kerala
babyvellayudhan@gmail.com vp@ncerc.ac.in
May — 2016

www.istpublications.com

Page - 25

mailto:babyvellayudhan@gmail.com
mailto:vp@ncerc.ac.in
http://www.istpublications.com/

International Journal of Future Innovative Science and Technology, ISSN: 2454- 194X
Volume-2, Issue-2, May - 2016 editor@istpublications.com

Performance Analysis of Data Mining
Techniques for High Utility Patterns
Discovery

Dr. N. K. Sakthivel
Computer Science and Engineering
Nehru College of Engineering and Research Centre Nehru College of Engineering and Research Centre
Pampady, Thiruvilwamala, Thrissur, Kerala Pampady, Thiruvilwamala, Thrissur, Kerala
babyvellayudhan@gmail.com vp@ncerc.ac.in

V. Baby
Computer Science and Engineering

ABSTRACT

Discovery of High Utility Itemsets(HUI) or pattern from database is very useful in processing business. By defining a tight upper
bound on the utility of candidates more conservative pruning can be achieved. High Utility Pattern growth pruning space by
searching a reverse set enumeration tree with utility upper bounding is used in the direct discovery of high utility patterns. User can
get concise HUIs by using Closed HUI.

Keywords- High utility pattern, closed high utility itemset, utility mining, lossless and concise representation, pattern mining

1. INTRODUCTION

Utility in high utility means importance,
interestingness or profitability of the items or pattern
whatever the business need. Comprehension will be
very difficult for the users if the algorithm gives a large
number of high utility patterns. Candidate pattern’s
Transaction Weighted Utilization (TWU) [2][5][7] is
the transaction’s utility sum.

Simplifying the utility calculation and reducing the
number of candidates depends the success of high
utility pattern mining. The search space can be better
pruned by specifying a tighter upper bound. Pruning
search space can be done either Pruning Before
Candidate Generation (PBCG) or Pruning After
Candidate Generation (PACG).

High Utility Pattern (HUP) [2][9][10] finds itemsets in
single phase. TWU patterns are not generating in HUP.
Original Utility is represented by using CAUL [2] data
structure. High Utility itemsets which have the closed
itemset [1] property is closed high utility itemset
discovery. It finds less number of itemsets than any
other algorithms. If we are considering the number of
itemset then CHUD [1][6] is best.

2. RECENTLY PROPOSED HIGH UTILITY
ITESET MINING TECHNIQUES

Identified recently proposed techniques as the Direct
Discovery of High Utility Patterns [2] and the Closed
High Utility Patterns [1] and those are the techniques
for mining High utility Itemsets.

2.1 ONE SLOT GENERATION OF HUI

A linear list data structure “Chain of Accurate Utility
Lists (CAUL) enables the efficient calculation of utility
and estimation of tight utility upper bound. It uses
reverse set enumeration tree [2]. There will be an
imposed ordering Q [2] in the tree and root does not
contain anything, other nodes are labeled by an item.
The path from the node to the root node is the pattern.
Child nodes of particular node are the items listed
before.

Algorithm 1: Direct Discovery of HighUTtilityPattern

1 Construct transaction set which contains the
Pattern and ordering and external utility

2 Reverse set enumeration tree root

3 DFS(node, transaction set of the pattern,

minimum Utility, given ordering)

Subroutine:DFS (node, transaction set of the pattern,
Minimum Utility, given ordering)

4 if utility of pattern of node> minimum utility
then output pattern of the node

Page - 26

mailto:babyvellayudhan@gmail.com
mailto:vp@ncerc.ac.in

International Journal of Future Innovative Science and Technology, ISSN: 2454- 194X

@ Volume-2, Issue-2, May - 2016

5 W-{ili<pattern of node and the utility sum of
full prefix extension of the transactions(union
of {i}and pattern of node)> minimum utility

6 if closure (pattern of node, W, minimum
utility) is Satisfied

7 then output nonempty subsets of WUpattern
of node

8 else if singleton(pattern of node,W, minimum
utility) is satisfied

9 then output WU pattern of node as a HUP

10 else foreach itemie W in Q do

11 if basic upper bound >minimum utility

12 then C the child node of the current node
fori

13 transaction set of pattern of node<project
(transaction set of pattern of the current node,
i)

14 DFS(C, transaction set(pattern of C, minimum
utility,Q)

15 end foreach

Closure is defined as for pattern X and set W of items
with X intersection W is a null set, the utility of (S U
X) > minimum utility, for all S (is a subset or equal to
W) and S is not a null set. If the minimum utility <
utility of W union X which is less than the sum of
minimum utility and the sum of the utility of the item
in w included in the transaction set of X then utility S
union X < minimum utility for all S, subset of W. This
property is known as Singletone.

For calculating the utilities and upper bound of prefix
extension of pattern CAUL is used. It contains two
division utility list and summary table. All the items in
transaction t which is relevant in growing prefix
extension of pattern the utility is stored in the utility
list. For each distinct relevant item j to grow the prefix
extension of pattern an entry is maintained in the
summary table. It is denoted as quintuple, summaryf[j]
= (support[j], utility[j],sum of full prefix extension of
{i} union pattern of the current node,

Algorithm 2: PsudoProject(CAUL of pattern of P,i)

foreach relevant item j <i do
summary[j]«0

end foreach

foreach utility list t threaded by link[i] do
utility of pattern of N « utility of pattern of

a b WDN B

editor@istpublications.com

P + utility of i in transaction t

6 calculate sum for all transaction together

7 foreach relevant item j belongstotand j <
by Q do

8 sljles[jl+1

9 u[j]<—u[j]tutility of j in t+utility of pattern of
node N in transaction t

10 sum «— sum + utility of j in t

11 basic upper bound for j <« basic upper
bound
for j +sum

12 end foreach

13 foreach relevant item j belongstotand j <i
by Q do

14 sum of full prefix itemsetof j «— sum of full

prefix itemset of j + sum
15 thread t into the chain by link][j]
16 end foreach
17 end foreach

basic upper bound, link[j]). Basic upper bound for a
pattern X is the sum of the utility of the full prefix
extension of X with respect to each transaction in the
transaction set. In the utility list the occurrences of the
same item are linked by a chain threading that is the
link[j].

CAUL of a pattern in the transaction set is calculated
efficiently by using pseudo projection [4]. In the
reverse enumeration tree node N and its parent node P,
pattern of N = {i} union pattern of parent. CAUL keeps
the original utility information for each transaction.
CAUL can determine whether X is a high utility
pattern before X is enumerated. Currently being
enumerated pattern only keeps in main memory. The
optimization is done by considering y as the maximum
number of rounds for irrelevant item filtering and @ for
materialization threshold for space-time tradeoff.

2.2 CLOSED HUI DISCOVERY

An itemset is closed if there is no superset which has
same support count. A high utility itemset is closed if
there should not be any proper superset having the
same utility. CHUD is an efficient depth-first search
algorithm. It uses Itemset - TidsetpairTree(IT-Tree)
[1][8] to find CHUIs. Each node consists of an itemset
X, Tidset g(X), two ordered sets of items PREV-
SET(X) and POST-SET(X) and estimated utility. The

Page - 27

International Journal of Future Innovative Science and Technology, ISSN: 2454- 194X

@ Volume-2, Issue-2, May - 2016

TU-Table stores the transaction utility with transaction
id.

CHUD [1] first scans the database and convert into a
vertical database. While creating vertical database, it
creates a global TU-Table. Promising items are stored
in an ordered list like an increasing order of support at
the same time unpromising items are removed from the
global TU-Table [1]. From single promising item,
CHUD generates candidates by recursively joining
items to the existing for forming larger candidates. For
each item a.in 0, CHUD creates a node and items a; to
a1 into PREV-SET({a}) and items ay; to an into
POST-SET({a}).

ALGORITHM: CHUD

Input: D: the database;absolute minimum utility
Output: complete set of CHUIs

01. InitialDatabaseScan(D)

02 RemoveUtilityUnpromisingltems(O, GTU)
03 foreach item a, belongs Odo

04 {Create node for a

05 CHUD_Phase-I(node for a, GTU,absolute
minimum utility)

06 Removing the Exact utilities of items from
the Global TU-Table

07 CHUD_Phase-11(D,absolute minimum utility

Phase | produce all the candidates containing the item
ay but no item a; < a, then Removing the Exact utilities
of items from the Global TU-Table. In Phase Il
absolute utility of pattern is no less than the absolute
minimum utility then the pattern is outputted as CHUI
then removes the isolated items of level k. CHUD
discovered items are not maintained in the main
memory, directly the item is outputted after that it will
discard candidates with maximum item utility less than
the minimum utility threshold. A candidate can be
discarded from Phase Il if its estimated utility[1] or
maximum item utility is less than the absolute utility

[1].

Phase-1 of CHUD find the complete set of potential
CHUIIs. If the set X is not subsumed by other itemsets
then closure of X, discarding candidate with the
maximum item utility of each calculated. Phase-I
explore the superset of X by appending items from
POST-SET(X) to X which forms the search space of

editor@istpublications.com

closed candidates for the second phase. So CHUD gets
a very less number of HUIs in Phase-I.

Phase-II gets inputs as promising item’s database,
potential CHUIs and absolute minimum utility and
produces all CHUIs by calculating absolute utility for
X and is greater than that of absolute minimum utility
then the set X is outputted. In CHUD, the exact utilities
of items were removed from the Global TU-Table, the
minimum item utility of an item of items were
removed from the Local TU Table, the maximum item
utility of an item candidates were discarded, these are
the strategies used.

3. IMPLEMENTATION OF D2HUP AND CHUD

Techniques D2HUP and CHUD were implemented in
Java by using the datasets Foodmart, Mushroom, retail
those are described in Table 1.

TABLE 1. DATASET CHARECTERISTICS

Dataset #Transactions #I?ties;[Ti:S]ct A\I/ghté'?hns.
Foodmart 4141 1559 44
Mushroom 8124 119 23
Retail 5133 16470 13

The datasets wused for implementation include
Foodmart, Mushroom and Retail as shown in the Table
1. Example for the sparse dataset is Foodmart.
Example for dense dataset is Mushroom. Both are real
life data sets. Retail is mixed dataset. Algorithms were
executed in Windows 8.1 operating system and Intel i3
processor at 1.7GHz. So many datasets like BMS,
Connect, Chess, Accident, Kosarak, pumsb utilities
have been used for testing. In those D2HUP was taking
a long time for output, but CHUD has shown output
within seconds. First started running by giving utility
values like 10000, 5000, 1000 then identified the
maximum utility for each dataset and taken 1%,
10%, 80% of the maximum utility as the minimum
utility.

4. RESULTS AND PERFORMANCE ANALYSIS

Table 1. Shows sample outputs got by running with the
three real life datasets by setting the minimum utility as
1%, 10% and 80%. If the minimum utility is low, then
the CHUD gives a very less number of patterns. Of
Mushroom which is a dense data set it gets almost

Page - 28

International Journal of Future Innovative Science and Technology, ISSN: 2454- 194X

@ Volume-2, Issue-2, May - 2016

5000 times less number of itemsets than D2HUP. It
means that much of repeated utilities with itemsets are
available with D2HUP. So if the user wants less
number of itemset then CHUD is the best technique. It
will be efficient for the requirement of business
calculations. When the utility is high, then both
algorithms are performing almost equally, with the
Mushroom dataset it gives again almost 190 times
lesser numbers of itemsets.

The three parameters analyzed with the three datasets
include the number of HUI derived, the memory usage
and the execution time of the techniques. The memory

editor@istpublications.com

help the managers reduce the workload for identifying
the selling items with more profit. Closed items are less
in number and it doesn't contain the repeated itemsets
so for finding the unique high utility itemsets CHUD is
very useful. The direct discovery of high utility
patterns finds more itemsets than Closed HUI
discovery. In all datasets CHUD displays the less
number or equal to D2HUP. Closed Itemsets will not
be having a superset with the same utility that is why
CHUD is always retrieving less number of high utility
itemsets.

usage is high 250000 —‘_[C)?;JBP
'_
TABLE 2. SAMPLE OUTPUT Z 200000 -\\
= Parameters 8 150000
2 Data . 5 \
£28| Tt | Technique HUI Men. Time T 100000
S (MB) (Sec.) \
count 50000
D2HUP 233180 17.5 1.37 >
Foodm 0 & . >— :
art CHUD 6679 13.32 59 0.01 0.1 0.8
1% ini ility(9
0 D2HUP 3311 114.23 36 Minimum Utility(%)
Retail
CHUD 3098 239.02 601
5395201 a) Foodmart
Mushr | D2HUP e 28.29 1608.19
oom CHUD | 107103 12.9 52.8 600000000
== CHUD
Foodm | D2HUP | 113663 11.2 1.45 500000000 l\
E el D2HUP
el CHUD 4474 7.82 47 Z 400000000 \
10% 0
’ D2HUP 51 50.71 3.73 O 300000000 N\
Retail 5
CHUD 51 72.62 3.73 £ 200000000 \
D2HUP | 5234758 27.97 124.73 100000000
Mushr : : \
oom 0 N4)) i
CHUD 13447 10.57 34.2 0.01 01 0.8
Foodm | D2HUP 1 6.7 0.09 Minimum Utility(%)
art CHUD 11 14.46 16
80% b) Mushroom
D2HUP 2 18.36 1.04
Retail | chup 2 14.4 1.34 CHUD
Mushr | D2HUP 757 24.45 1.18 4000 D2HUP
SO CHUD 4 10.79 4.16 £ 3000
=)
, S 2000
for D2HUP with the Foodmart as well as the O
Mushroom dataset. Only for Retail CHUD took more 3 1000
memory. When the minimum utility is 1%. For 0 \ -
Foodmart when the utility is high that is about 80% 0.01 ' ' 08 '

CHUD took more memory. For Mushroom CHUD
took two times less memory than the D2HUP.Mining
itemsets without repetition is very important and it will

0.1
Minimum Utility(%)

) Retail

Page - 29

International Journal of Future Innovative Science and Technology, ISSN: 2454- 194X
Volume-2, Issue-2, May - 2016 editor@istpublications.com

Fig. 1. HUI count vs. Minimum Ultility(%) === CHUD

== D2HUP

The time taken for the execution is less with CHUD for
dense dataset like Mushroom and it is very less for the
less value of the minimum utility. For Mushroom
CHUD is 30 times faster than D2HUP and for retail
D2HUP is performing well than CHUD. If we want to
retrieve high utility itemset in the dense large dataset,
then for less number of itemsets those contributing
more to the profit CHUD is the best solution. For big
dataset like BMS, Connect, which have high values as
the item utility then also CHUD is the best.

N
T e

i

0.01 0.1 0.8
Minimum Utility(%)

Execution Time(Seconds)
O P N W M 01T O N

a) Foodmart

2 2000 e CHUD
20 =g CHUD -g == D2HUP
& 15 \ el D2HUP E 1500
2 10 = 1000
2 5 AN
g s = 500
5 h
= . . . 0 ? :
0.01 0.1 0.8 0.01 0.1 0.8
Minimum Utility(%) Minimum Utility(%)
a) Foodmart b) Mushroom
~ 30 9—CHUD - ?OO o= CHUD
S = '\. ~f—D2HUP £ 300 —m—D2HUP
)
T 20 =X \
g @ £100
2 10 200
. \
Q
2 0 : : . 0 m, . . |
0.01 0.1 0.8
0.01 0.1 0.8 - -
Minimum Utility(%) Minimum Utility(%)
¢) Retail

b) Mushroom

300 Fig. 3. Execution time vs. Minimum Utility(%)

=g CHUD

g 250 \ —=—D2HUP 5. CONCLUSION AND FUTURE WORK

£ 200 - o - e

& 150 \ Mining by specifying the minimum utility is very
3 100 B \ difficult for the users because users may not be
g knowing the highest utility so users have to do trial and
E 50 . . . L .
= error in getting the desired result and it is time taking

0,01 01 0.8 and sometimes they will not get the desired result, so

Minimum Utility(%) for that user can specify the number of results or the

number of patters or itemsets they want for example K.

Mining top-k high utility itemsets[3] will be more

Fig. 2.Memory Usage vs. Minimum Utility(%6) useful so the future work is for implementing top-k
CHUD.

c) Retail

Page - 30

International Journal of Future Innovative Science and Technology, ISSN: 2454- 194X
Volume-2, Issue-2, May - 2016 editor@istpublications.com

REFERENCES

[1]. Vincent S. Tseng, Cheng-Wei Wu, Philippe Fournier-Viger,
and Philip S. Yu, “Efficient Algorithms for Mining the
Concise and Lossless Representation of High Utility
Itemsets,” IEEE Trans. Knowl. Data Eng.,vol. 27, no. 3, pp.
726— 739, Mar. 2015.

[2]. Jungiang Liu, Ke Wang, and Benjamin C.M. Fung, “Mining
High Utility Patterns in One Phase without Generating
Candidates,” IEEE Trans. Knowl. Data Eng,
DOI10.1109/TKDE.2015

[3]. Vincent S. Tseng, Cheng-Wei Wu, Philippe Fournier-
Viger,and Philip S. Yu, “Efficient Algorithms for Mining
Top-K High Utility Itemsets,” IEEE Trans. Knowl. Data
Eng., DOI10.1109/TKDE.2015.

[4]. G.-C. Lan, T.-P. Hong, and V. S. Tseng, “An efficient
projection based indexing approach for mining high utility
itemsets,”KAIS, vol. 38, no. 1, pp. 85-107, 2014.

[5]. V. S. Tseng, C.-W. Wu, B.-E.Shie, and P. S. Yu, “UP-
Growth: An efficient algorithm for high utility itemset
mining,” in Proc. ACMSIGKDD Int. Conf. Knowl. Discov.
Data Mining, 2010, pp. 253-262.

[6]. C.-W Wu, P. Fournier-Viger, P. S. Yu, and V. S. Tseng,
“Efficient mining of a concise and lossless representation of
high utility itemsets,” in Proc. IEEE Int. Conf. Data Mining,
2011, pp. 824-833.

[7]. V. S. Tseng, B.-E.Shie, C.-W. Wu, and P. S. Yu, “Efficient
algorithms for mining high utility itemsets from transactional
databases,” IEEE TKDE, vol. 25, no. 8, pp. 1772-1786, 2013.

[8]. C.-W. Lin, T.-P. Hong, and W.-H. Lu, “An effective tree
structure for mining high utility itemsets,” Expert Syst. Appl.,
vol. 38, no. 6, pp 7419-7424, 2011.

[9]. M. Liu and J. Qu, “Mining high utility itemsets without
candidate generation,” in CIKM. ACM, 2012, pp. 55-64.

[10]. J. Liu, K. Wang, and B. Fung, “Direct discovery of high
utility ltemsets without candidate generation,” in ICDM.
IEEE, 2012, pp. 984-989.

Page - 31

