International Journal of Future Innovative Science and Engineering Research (IJFISER)
Volume - 2, Issue - IT ISSN (Online): 2454- 1966

= (= e | <
Research Manuscript Title

PROCESSING AND STORING DATA IN MOBILE CLOUD WITH ENERGY
COMPETENT BLUNDER FOR BEARING

M.Poonkodi, M.E(CSE), M.Balakrishnan,
P.G. Scholar, Associate Professor,

Selvam College of Technology, Namakkal

JUNE - 2016

www.istpublications.com

M.Poonkodi Et.al.,“PROCESSING AND STORING DATA IN MOBILE CLOUD WITH ENERGY COMPETENT BLUNDER FOR BEARING”, International Journal
of Future Innovative Science and Engineering Research (IJFISER) ISSN (Online): 2454- 1966, Volume-2, Issue-2, JUNE - 2016, Page-204


http://www.istpublications.com/

].g International Journal of Future Innovative Science and Engineering Research (1JFISER), Volume - 2, Issue — 11,
ISSN (Online): 2454- 1966 www.istpublications.com.

PROCESSING AND STORING DATA IN MOBILE CLOUD WITH ENERGY
COMPETENT BLUNDER FOR BEARING

M.Poonkodi, M.E(CSE), M.Balakrishnan,
P.G. Scholar, Associate Professor,
Selvam College of Technology, Namakkal

ABSTRACT

Despite the advances in hardware for hand-held mobile devices, resource-intensive applications (e.g., video and
image storage and processing or map-reduce type) still remain bounds since they require large computation and
storage capabilities. Recent research has attempted to address these issues by employing remote servers, such as
clouds and peer mobile devices. For mobile devices deployed in dynamic networks (i.e., with frequent topology
changes because of node failure/unavailability and mobility as in a mobile cloud), however, challenges of Reliability
and energy EFFICIENCY remain largely unaddressed. To the best of our knowledge, we are the first to address these
challenges in an integrated manner for both data storage and processing in mobile cloud, an approach we call k-out-
of-n computing. In our solution, mobile devices successfully retrieve or process data, in the most energy- way, as long
as k out of n remote servers are accessible. Through a real system implementation we prove the feasibility of our
approach. Extensive simulations demonstrate the fault tolerance and energy eficiency performance of our
framework in larger scale networks.

Index Terms—Mobile Computing, Cloud Computing, Mobile Cloud, Energy- Computing, Fault-
Tolerant Computing.

Introduction

Personal mobile devices have gained enormous popularity in recent years. Due to their
limited resources (e.g., computation, memory, energy), how-ever, executing sophisticated
applications (e.g., video and image storage and processing, or map-reduce type) on mobile devices
remains challenging. As a result, many applications rely on off loading all or part of their
works to “remote servers” as clouds and peer mobile devices. For instance, applications such as
Google goggle and Sire process the locally collected data on clouds. Going beyond the
traditional cloud-based scheme, recent research has proposed to processes on mobile devices by
migrating a Virtual Machine (VM) overlay to nearby infrastructures [1], [2], [3]. This strategy
essentially allows off loading any process or application, but it requires a complicated VM
mechanism and a stable network connection. Some systems (e.g., Serendipity [4]) even leverage peer
mobile devices as remote servers to complete computation-intensive job.

In dynamic networks, e.g., mobile cloud for disaster response or military operations [5], when
selecting remote servers, energy consumption for accessing them must be minimized while taking into
account the dynamically changing topology. Serendipity and other VM-based solutions considered the
energy cost for processing a task on mobile devices and off loading a task to the remote servers, but
they did not con-side the scenario in a multi-hop and dynamic network where the energy cost for
relaying/transmitting packets is significant. Furthermore, remote servers are often inaccessible because
of node failures, unstable links, or node-mobility, raising a reliability issue. Although Serendipity
considers intermittent connections, node failures are not taken into account; the VM-based solution
considers only static networks and is difficult to deploy in dynamic environments.

In this article, we propose the first framework to sup-port fault-tolerant and energy- remote storage
& processing under a dynamic network topology, i.e., mobile cloud. Our framework aims for
applications that require energy- and reliable distributed data storage & processing in dynamic network.
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E.g., military operation or disaster response. We integrate the k-out-of-n reliability mechanism into
distributed computing in mobile cloud formed by only mobile devices. k-out-of-n, a well-studied topic
in reliability control [6], ensures that a system of n components operates
Correctly as long as k or more components work. More specifically, we investigate how to store
data as well as process the stored data in mobile cloud with k-out-of-n reliability such that: 1) the
energy consumption for retrieving dis-tributed data is minimized; 2) the energy consumption for
processing the distributed data is minimized; and 3) data and processing are distributed considering dy-
namic topology changes.In our proposed framework, a data object is encoded and partitioned into n
fragments, and then stored on n different nodes. As long as k or more of the n nodes are available, the
data object can be successfully recovered. Similarly, another set of n nodes are assigned tasks for
processing the stored data and all tasks can be completed as long as k or more of the n processing nodes
finish the assigned tasks. The parameters k and n determine the degree of reliability and different (k, n)
pairs may be assigned to data storage and data processing. System administrators select these
parameters based on their reliability requirements. The contributions of this article are as follows:
* It presents a mathematical model for both optimizing energy consumption and meeting the fault
tol-erance requirements of data storage and processing under a dynamic network topology.
* It presents an algorithm for estimating the communication cost in a mobile cloud, where nodes fail
or move, joining/leaving the network.
* It presents the first process scheduling algorithm that is both fault-tolerant and energy .
* It presents a distributed protocol for continually monitoring the network topology, without requir-
ing additional packet transmissions.
It presents the evaluation of our proposed frame-work through a real hardware implementation and
large scale simulations.

The article is organized as follows:

Section 2 intro-duces the architecture of the framework and the math-ematical formulation of the
problem. Section 3 describes the functions and implementation details of each com-ponent in the
framework. In section 4, an application that uses our framework (i.e., a mobile distributed file system —
MDFS) is developed and evaluated. Section 5 presents the performance evaluation of our k-out-of-n
framework through extensive simulations. Section 6 reviews the state of art. We conclude in Section .

Architecture and Formulations
An overview of our proposed framework is depicted in Figure 1. The framework, running on all

mobile nodes, provides services to applications that aim to:
(1) store data in mobile cloud reliably such that the energy consumption for retrieving the data is
minimized (k-out-of-n data allocation problem); and (2) reliably process the stored data such that
energy consumption for processing the data is minimized (k-out-of-n data processing problem). As an
example, an application running in a mobile ad-hoc network may generate a large amount of media
files and these files must be stored reliably such that they are recoverable even if certain nodes fail. At
later time, the application may make queries to files for information such as the number of times an
object appears in a set of images. Without loss of generality, we assume a data object is stored once, but
will be retrieved or accessed for processing multiple times later.

We first define several terms. As shown in Figure 1, applications generate data and our framework
stores data in the network. For higher data reliability and availability, each data is encoded and
partitioned into

Architecture for integrating the k-out-of-n com-puting framework for energy efficiency and fault-
tolerance. The framework is running on all nodes and it provides data storage and data processing
services to applications, e.g., image processing, Hadoop.

Fragments

The fragments are distributed to a set of storage nodes. In order to process the data, applications
provide functions that take the stored data as inputs. Each function is instantiated as multiple tasks that
pro-cess the data simultaneously on different nodes. Nodes executing tasks are processor nodes; we call
a set of tasks instantiated from one function a job. Client nodes are the nodes requesting data allocation
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or processing operations. A node can have any combination of roles from: storage node, processor
node, or client node, and any node can retrieve data from storage nodes.

As shown in Figure 1, our framework consists of five components: Topology Discovery and
Monitoring, Failure Probability Estimation, Expected Transmission Time (ETT) Computation, k-out-
of-n Data Allocation and k-out-of-n Data Processing. When a request for data allocation or processing
is received from applications, the Topology Discovery and Monitoring component provides network
topology information and failure probabilities of nodes. The failure probability is estimated by the
Failure Probability component on each node. Based on the retrieved failure probabilities and network
topology, the ETT Computation com-ponent computes the ETT matrix, which represents the expected
energy consumption for communication between any pair of node. Given the ETT matrix, our
framework finds the locations for storing fragments or executing tasks. The k-out-of-n Data Storage
compo-nent partitions data into n fragments by an erasure code algorithm and stores these fragments in
the network such that the energy consumption for retrieving k fragments by any node is minimized. k is
the minimal number of fragments required to recover a data. If an application needs to process the data,
the k-out-of-n Data Processing component creates a job of M tasks and schedules the tasks on n
processor nodes such that the energy consumption for retrieving and processing these data is
minimized.

This component ensures that all tasks complete as long as k or more processor nodes finish their
assigned tasks. The Topology Discovery and Monitoring component continuously monitors the net-
work for any significant change of the network topology. It starts the Topology Discovery when
necessary.

Preliminaries

Having explained the overall architecture of our frame-work, we now present design primitives for
the k-out-of-n data allocation and k-out-of-n data processing. We consider a dynamic network with N
nodes denoted by asetV={v;, vz, ..., W }.
We assume nodes are time synchronized. For convenience, we will use i and v; interchangeably
hereafter. The network is modeled as a graph G = (V, E), where E is a set of edges indicating the
communication links among nodes. Each node has an associated failure probability P [fi] where f; is the
event that causes node v; to fail.

Relationship Matrix

Risa N x N matrix defining the relationship between nodes and storage nodes. More precisely, each
element R;; is a binary variable — if R is 0, node i will not retrieve data from storage node j; if R is 1,
node i will retrieve fragment from storage node j.\

Storage node list
X is a binary vector containing storage nodes, i.e., X; = 1 indicates that v; is a storage node

Expected Transmission Time Matrix

The D is defined as a N xN matrix where element D;; corresponds to the ETT for transmitting a fixed
size packet from node i to node j considering the faiiure probabilities of nodes in the network, i.e.,
multiple possible paths between node i and node j.

The ETT metrix has been widely used for estimating transmission time between two nodes in one
hop. We assign each edge of graph G a positive estimated transmission time. Then, the path with the
shortest transmission time between any two nodes can be found.

Scheduling Matrix

Sisan L x N x M matrix where element S;;; = 1 indicates that task j is scheduled at time | on node i;
otherwise, Sjij = 0. | is a relative time referenced to the starting time of a job. Since all tasks are
instantiated from the same function, we assume they spend approximately the same processing time on
any node. Given the terms and notations, we are ready to formally describe the k-out-of-n data
allocation and k-out-of-n data processing problems.
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Formulation of k-out-of-n Data Allocation Problem

In this problem, we are interested in finding n storage nodes denoted by S={s1,S2,..sn },SEV
such that, Given the failure probability of all nodes, we calculate the ETT matrix D. However, if failure
probabllltles of all nodes are taken into account, the number of possible graphs is extremely Iarge e.g.,
a total of 2" possible graphs, as each node can be either in failure or non-failure state. Thus, it is
infeasible to deterministically calculate ETT matrix when the network size is large.

Importance Sam-pling technique

one of the Monte Carlo methods, to approximate ETT. The Importance Sampling allows us to
approximate the value of a function by evaluating multiple samples drawn from a sample space with
known probability distribution. In our scenario, the probability distribution is found from the failure
probabilities calculated previously and samples used for simulation are snapshots of the network graph
with each node either fails or survives. The function to be approximated is the ETT matrix, D. Then, a
set of sample graphs can be defined as a multivariate Bernoulli random variable .

The first constraint (Eq 2) selects exactly n nodes as storage nodes; the second constraint (Eq 3)
indicates that each node has access to k storage nodes; the third constraint (Eq 4) ensures that j"™ column
of R can have a non-zero element if only if X; is 1; and constraints (Eq 5) are binary requirements for
the decision variables.

Formulation of k-out-of-n Data Processing Problem

The objective of this problem is to find n nodes in V as processor nodes such that energy
consumption for processing a job of M tasks is minimized. In addition, it ensures that the job can be
completed as long as k or more processors nodes finish the assigned tasks. Before a client node starts
processing a data object, assuming the correctness of erasure coding, it first needs to retrieve and
decode k data fragments because nodes can only process the decoded plain data object, but not the
encoded data fragment.
In general, each node may have different energy cost depending on their energy sources; e.g., nodes
attached to a constant energy source may have zero energy cost while nodes powered by battery may
have relatively high energy cost. For simplicity, we assume the network is homogeneous and nodes
consume the same amount of energy for processing the same task. As a result, only the transmission
energy affects the energy efficiency of the final solution. We leave the modeling of the general case as
future work.

We define some func-tions: (1) f; (i) returns 1 if node i in S has at least one task; otherwise, it
returns 0; (2) f2(j) returns the num-ber of mstances of task j in S; and (3) f3 (z, j) returns the transmission
cost of task j when it is scheduled for the z" time. We now formulate the k — out — of — n data
processing problem as shown in Eq 6 - 11. The objective function (Eq 6) minimizes the total
transmission cost for all processor nodes to retrieve their tasks. | represents the time slot of executing a
task; i is the index of nodes in the network; j is the index of the task of a job.

Data Retrieval, Time Matrix is a N x M matrix, where the element Tj corresponds to the estimated
time for node i to retrieve task j. T"is computed by summing the transmission time (in terms of ETT
available in D) from node i to its k closest storage nodes of the task.

The first constraint ensures that n nodes in the network are selected as processor nodes. The second
constraint (Eq 8) indicates that each task is replicated n — k + 1 times in the schedule such that any
subset of k processor nodes must contain at least one instance of each task.

The third constraint states that each task is replicated at most once to each processor node. The fourth
constraint (Eq 10) ensures that no duplicaFailure Probability Estimation

We assume a fault model in which faults caused only by node failures and a node is inaccessible and
cannot is a time interval during which the estimated failure probability is effective.

A node estimates its failure probability based on the following events/causes: energy depletion,
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temporary disconnection from a net- time t+ T, where work (e.g., due to mobility), and
application-specific We assume that these events happen indecent- factors.

Energy and Fault Tolerant Data
Allocation and Processing
This section presents the details of each component in our framework.

Topology Discovery
Topology Discovery is executed during the network initialization phase or whenever a significant
change of the network topology is detected (as detected by the Topology Monitoring component).

During Topol-ogy Discovery, one delegated node floods a request packet throughout the network.
Upon receiving the request packet, nodes reply with their neighbor tables and failure probabilities.
Consequently, the delegated node obtains global connectivity information and fail-ure probabilities of
all nodes. This topology information can later be queried by any node.

Failure by Temporary Disconnection

Nodes can be temporarily disconnected from a network, e.g., because of the mobility of nodes, or
simply when users turn off the devices. The probability of temporary disconnection differs from
application to application, but this information can be inferred from the history: a node gradually learns
its behavior of disconnection and cumulatively creates a probability distribution of its disconnection.
Then, given the current time t, we can estimate the probablllty that a node is disconnected
from the network by the time t + T as follows: P f = P [Node i disconnected between tand t + T ].

Failure by Application-dependent Factors

Some applications require nodes to have different roles. In a military application for example, some
nodes are equipped with better defense capabilities and some nodes may be placed in high-risk areas,
rendering differ-ent failure probabilities among nodes. Thus, we define the failure probability P [f* ]
for application-dependent factors. This type of failure is, however usually explic-itly known prior to
the deployment.

Expected Transmission Time Computation

It is known that a path with minimal hop-count does not necessarily have minimal end-to-end delay
because a path with lower hop-count may have noisy links, resulting in higher end-to-end delay.
Longer delay im-plies higher transmission energy. As a result, when distributing data or processing the
distributed data, we consider the most energy- paths — paths with minimal transmission time. When we
say path p is the shortest path from node i to node j, we imply that path p has the lowest transmission
time (equivalently, lowest energy consumption) for transmitting a packet from node i to node j. The
shortest distance then implies the lowest transmission time Given the failure probability of all nodes,
we calculate the ETT matrix D. However, if failure probabllltles of all nodes are taken into account, the
number of possible graphs is extremely Iarge e.g., a total of 2" possible graphs, as each node can be
either in failure or non-failure state. Thus, it is infeasible to deterministically calculate ETT matrix
when the network size is large.

To address this issue, we adopt the Importance Sam-pling technique, one of the Monte Carlo methods,
to approximate ETT. The Importance Sampling allows us to approximate the value of a function by
eval-uating multiple samples drawn from a sample space with known probability distribution. In our
scenario, the probability distribution is found from the failure probabilities calculated previously and
samples used for simulation are snapshots of the network graph with each node either fails or survives.
The function to be approximated is the ETT matrix, D. A sample graph is obtained by considering each
node as an independent Bernoulli trial, where the suc-cess probability for node i is defined as: pxi (x) =
Niz1 pxi (X). X1, X2, ..., X, are the binary outcomes of Bernoulli experiment on each node. bisan 1 x N
vector representing one sample graph and b [i] in binary indicating whether node i survives or fails in
sample b. Having defined our sample, we determine the number of required Bernoulli samples by
checking the variance of the ETT matrix denoted by V ar (E [D (B)]), where the ETT matrix E [D
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Carlo Simulation. The simulation continues until V ar D (B) is less than dist vary, , a user defined
threshold depending on how accurate the approximation has to be. We chose dist vary, to be 10% of the
smallest node-to-node distance in D (B). Figure 2 compares the ETT found by Importance Sampling
with the true ETT found by a brute force method in a network of 16 nodes.

K-out-of-n Data Allocation

After the ETT matrix is computed, the k-out-of-n data allocation is solved by ILP solver. A simple
example of how the ILP problem is formulated and solved is shown here. Considering Figure 2(b),
distance Matrix D is a 4 x 4 symmetric matrix with each component D;; indicating the expected
distance between node i and node j. Let’s assume the expected transmissions time on all edges are
equal to 1 As an example, Dy; is calculated by finding the probability of two possible paths: 2 — 1 — 3
or 2 — 4 — 3. The probability of 2 - 1 — 315 0.8 X 0.8 x 0.9 x 0.4 = 0.23 and the probability of 2 —
4 —3is0.8%x 0.6 x0.9 x 0.2 =0.08. Another possible case is when all nodes survive and either path
may be taken. This probability is 0.8 x 0.8x0.6x0.9 = 0.34. The probability that no path exists between
node 2 and node 3 is (1-0.23-0.08-0.34=0.35).

K-out-of-n Data Processing

The k-out-of-n data processing problem is solved in two stages — Task Allocation and Task
Scheduling. In the Task Allocation stage, n nodes are selected as processor nodes; each processor node
IS assigned one or more tasks; each task is replicated to n — k + 1 different processor nodes. An example
is shown in Figure 3(a). However, not all instances of a task will be executedonce an instance of the
task completes, all other instances will be canceled. The task allocation can be formulated as an ILP as
shown in Egs 12 - 16. In the formulation, Rjj is a N xM matrix which predefines the relationship
between processor nodes and tasks; each element R;; is a binary variable indicating whether taskj is
assigned to processor node i. X is a binary vector containing processor nodes, i.e., Xj = 1 indicates that
vj Is a processor node. The objective function minimizes the transmission time for n processor nodes to
retrieve all their tasks. The first constraint (Eq 13) indicates that n of the N nodes will be selected as
processor nodes. The second constraint (Eq 14) repllcates each task to (n — k + 1) different processor
nodes. The third constraint (Eq 15) ensures that theJ column of R can have a non-zero element if only
if Xj is 1; and the constraints (Eq 16) are binary requirements for the decision variables.

Once processor nodes are determined, we proceed to the Task Scheduling stage. In this stage, the
tasks assigned to each processor node are scheduled such that the energy and time for finishing at least
M distinct tasks is minimized, meaning that we try to shorten the job completion time while minimizing
the overall energy consumption. The problem is solved in three steps. First, we find the minimal energy
for executing M distinct tasks in R;; . Second, we find a schedule with the minimal energy that has the
shortest completion time. As shown in Figure 3(b), tasks 1 to 3 are scheduled on different nodes at time
slot 1; however, it is also possible that tasks 1 through 3 are allocated on the same node, but are
scheduled in different time slots, as shown in Figure 3(c) and 3(d). These two steps are repeated n-k+1
times and M distinct tasks are scheduled upon each iteration. The third step is to shift tasks to earlier
time slots. A task can be moved to an earlier time slot as long as no duplicate task is running at the
same time, e.g., in Figure 3(d), task 1 on node 6 can be safely moved to time slot 2 because there is no
task 1 scheduled at time slot 2.The ILP problem shown in Equations 17 - 20 finds M unique tasks from
Rjj that have the minimal trans-mission cost. The decision variable W is an N x M matrix where R;j = 1
indicates that task j is selected to be executed on processor node i. The first constraint (Eq 18) ensures
that each task is scheduled exactly one time. The second constraint (Eq 19) indicates that W;; can be set
only if task j. is allocated to node i in R;

An overview of improved MDFS

The Topology Monitoring component is simple yet energy-efficient as it does not incur significant
communication overhead — it simply piggybacks node ID on a beacon message. The protocol is
depicted in Algorithm 2. We predefine one node as a topology delegate Vg4 Who is responsible for
maintaining the global topol-ogy information. If p of a node is greater than the threshold z; , the node
changes its state to U and piggybacks its ID on a beacon message. Whenever a node with state U finds
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that its p becomes smaller than z; , it changes its state back to N U and puts —ID in a beacon message.
Upon receiving a beacon message, nodes check the IDs in it. For each ID, nodes add the ID to set ID if
the 1D is positive; otherwise, remove the ID. If a client node finds that the size of set ID becomes
greater than z, , a threshold for “significant” global topology change, the node notifies Vg ; and Ve
executes the Topology Discovery protocol. To reduce the amount of traffic, client nodes request the
global topology from Vg , instead of running the topology dis-covery by themselves. After Ve
completes the topology update, all nodes reset their status variables back to N U and set p = 0.

System Evaluation

This section investigates the feasibility of running our framework on real hardware. We compare the
perfor-mance of our framework with a random data allocation and processing scheme (Random), which
randomly se-lects storage/processor nodes. Specifically, to evaluate the k-out-of-n data allocation on
real hardware, we implemented a Mobile Distributed File System (MDFS) on top of our k-out-of-n
computing framework. We also test our k-out-of-n data processing by implementing a face recognition
application that uses our MDFS.

Each file is encrypted and encoded by erasure coding into n; data fragments, and the secret key for
the file is decomposed into n, key fragments by key sharing algorithm. Any maximum distance
separable code can may be used to encoded the data and the key; in our experiment, we adopt the well-
developed Reed-Solomon code and Shamir’s Secret Sharing algorithm. The n; data fragments and n,
key fragments are then distributed to

Current consumption on Smartphone in different states nodes in the network. When a node needs to
access a file, it must retrieve at least k; file fragments and k, key fragments. Our k-out-of-n data
allocation allocates file and key fragments optimally when compared with the state-of-art [10] that
distributes fragments uniformly to the network. Consequently, our MDFS achieves higher reliability
(since our framework considers the possible failures of nodes when determining storage nodes) and
higher energy efficiency (since storage nodes are selected such that the energy consumption for
retrieving data by any node is minimized). We implemented our system on HTC Evo 4G Smart-phone,
which runs Android 2.3 operating system us-ing 1G Scorpion CPU, 512MB RAM, and a Wi-Fi 802.11
b/g interface. To enable the Wi-Fi AdHoc mode, we rooted the device and modified a config file — wpa
supplicant.conf. The Wi-Fi communication range on HTC Evo 4G is 80-100m. Our data allocation was
programmed with 6,000 lines of Java and C++ code.

The experiment was conducted by 8 students who carry smartphones and move randomly in an open
space. These smartphones formed an Ad-Hoc network and the longest node to node distance was 3
hops. Students took pictures and stored in our MDFS. To evaluate the k-out-of-n data processing, we
designed an application that searches for human faces appearing in all stored images. One client node
initiates the process-ing request and all selected processor nodes retrieve, decode, decrypt, and analyze
a set of images. In average, it
Reliability with respect to different k/n ratio and failure probability stream, the time may increase in an
order of magnitude. The peak memory usage of our application was around 3MB. In addition, for a
realistic energy consumption model in simulations, we profiled the energy consump-tion of our
application (e.g., WiFi-idle, transmission, re-ception, and 100%-cpu-utilization). Figure 5 shows our
experimental setting and Figure 6 shows the energy pro-file of our smartphone in different operating
states. It shows that Wi-Fi component draws significant current during the
communication(sending/receiving packets) and the consumed current stays constantly high during the
transmission regardless the link quality

We encoded it with different k values while keeping parameter n = 8. The left y-axis is the size of
each encoded fragment and the right y-axis is the percentage of the overhead. Figure 8 shows the
system reliability with respect to different k while n is constant. As expected, smaller k/n ratio achieves
higher reliability while incurring more storage overhead. An interesting observation is that the change
of system reliability slows down at k = 5 and reducing k further does not improve the reliability much.
Hence, k = 5 is a reasonable choice where overhead is low (=~ 60% of overhead) and the reliability is
high(= 99% of the highest possible reliability).

M.Poonkodi Et.al.,“PROCESSING AND STORING DATA IN MOBILE CLOUD WITH ENERGY COMPETENT BLUNDER FOR BEARING”, International Journal
of Future Innovative Science and Engineering Research (IJFISER) ISSN (Online): 2454- 1966, Volume-2, Issue-2, JUNE - 2016, Page-211



].g International Journal of Future Innovative Science and Engineering Research (1JFISER), Volume - 2, Issue — 11,
ISSN (Online): 2454- 1966 www.istpublications.com.

To validate the feasibility of running our framework on a commercial Smartphone, we measured the
ex-ecution time of our MDFS application in Figure 9. For this experiment we varied network size N
and set n = [0.6N
Fig. 10. Execution time of different components with respect to various network size. File retrieval
time of Random and our algorithm (KNF) is also compare here
n, = n. As shown, nodes spent much longer time in dis-tributing/retrieving fragments than other
components such as data encoding/decoding. We also observe that the time for distributing/retrieving
fragments increased with the network size. This is because fragments are more sparsely distributed,
resulting in longer paths to distribute/retrieve fragments. We then compared the data retrieval time of
our algorithm with the data re-trieval time of random placement. Figure 10 shows that our framework
achieved 15% to 25% lower data retrieval time than Random. To validate the performance of our k-out-
of-n data processing, we measured the completion rate of our face-recognition job by varying the
number of failure node. The face recognition job had an average completion rate of 95% in our
experimental setting

Simulation Results

We conducted simulations to evaluate the performance of our k out-of-n framework (denoted by
KNF) in larger scale networks We consider a network of 400><400m where up to 45 mobile nodes are
randomly deployed. networks. We consider a network of 400x400m? where up to 45 mobile nodes are
randomly deployed. The communication range of a node is 130m, which is measured on our
smartphones. Two different mobility models are tested — Markovian Waypoint Model and Reference
Point Group Mobility (RPGM). Markovian Waypoint is similar to Random Waypoint Model, which
randomly selects the waypoint of a node, but it accounts for the current waypoint when it determines
the next waypoint. RPGM is a group mobility model.

Subset of leaders are selected; each leader moves based on Markovian Waypoint model and other
non-leader nodes follow the closest leader. Each mobility trace contains 4 hours of data with 1Hz
sampling rate. Nodes beacon every 30 seconds We compare our KNF with two other schemes — a
greedy algorithm (Greedy) and a random placement algorithm (Random). Greedy selects nodes with
the largest number of neighbors as storage/processor nodes because nodes with more neighbors are
better can-didates for cluster heads and thus serve good facil-ity nodes. Random selects storage or
processor nodes randomly. The goal is to evaluate how the selected storage nodes impact the
performance. We measure the following metrics: consumed energy for retrieving data, consumed
energy for processing a job, data retrieval rate, completion time of a job, and completion rate of a job.
We are interested in the effects of the following parameters — mobility model, node speed, k/n ratio, 7, ,
and number of failed nodes, and scheduling. The default values for the parameters are: N =26, n =7, k
=4, 11 = 3, r, = 20; our default mobility model is RPGM with node-speed 1m/s. A node may fail due to
two independent factors: depleted energy or an application-dependent failure probability; specifically,
the energy associated with a node decreases as the time elapses, and thus increases the failure
probability. Each node is assigned a constant application-dependent failure probability.

We first perform simulations for k-out-of-n data al-location by varying the first four parameters and
then simulate the k-out-of-n data processing with different number of failed nodes. We evaluate the
performance of data processing only with the number of node failures because data processing relies on
data retrieval and the performance of data allocation directly impacts the performance of data
processing. If the performance of data allocation is already bad, we can expect the performance of data
processing will not be any better.

The simulation is performed in Matlab. The energy profile is taken from our real measurements on
smart-phones; the mobility trace is generated according to RPGM mobility model; and the linear
programming problem is solved by the Matlab optimization toolbox

Elect of Mobility
In this section, we investigate how mobility models affect different data allocation schemes. Figure
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11 depicts the results. An immediate observation is that mobility causes nodes to spend higher energy
in retrieving data compared with the static network. It also shows that the energy consumption for
RPGM is smaller than that for Markov. The reason is that a storage node usually serves the nodes in its
proximity; thus when nodes move in a group, the impact of mobility is less severe than when all nodes
move randomly. In all scenarios, KNF consumes lower energy than others.

Elect of k/n Ratio

Parameters k and n, set by applications, determine the degree of reliability. Although lower k/n ratio
provides higher reliability, it also incurs higher data redundancy. In this section, we investigate how the
k/n ratio (by varying k) influences different resource allocation schemes. Figure 12 depicts the results.
The data retrieval rate decreases for all three schemes when k is increased. It is because, with larger k,
nodes have to access more storage nodes, increasing the chances of failing to retrieve data fragments
from all storage nodes. However, since our solution copes with dynamic topology changes, it still
yields 15% to 25% better retrieval rate than the other two schemes.

One observation is that the consumed energy for Random does not increase much compared with
the other two schemes.
KNF and Greedy, for Random, storage nodes are ran-domly selected and nodes choose storage nodes
ran-domly to retrieve data; therefore, when we run the experiments multiple times with different
random selections of storage nodes, we eventually obtain a similar average energy consumption. In
contrast, KNF and Greedy select storage nodes based on their specific rules; thus, when k becomes
larger, client nodes have to communicate with some storage nodes farther away, leading to higher
energy consumption.

Although lower k/n is beneficial for both retrieval rate and energy efficiency, it requires more
storage and longer data distribution time. A 1MB file with k/n = 0.6 in a network of 8 nodes may take
10 seconds or longer to be distributed (as shown in Figurel0).

Elect of 7, and Node Speed

We can see that smaller 7, allows for higher retrieval rates. The main reason is that smaller 7, causes
KNF to update the placement more frequently. We are aware that smaller 7, incurs overhead for
relocating data fragments, but as shown in Figure 15, energy consumption for smaller z, is still lower
than that for larger 7, . The reasons are, first, energy consumed for relocating data fragments is much
smaller than energy consumed for in data retrieval; second, not all data fragments need to be relocated.
Another interest-ing observation is that, despite higher node speed, both retrieval rates and consumed
energy do not increase much. The results confirm that our topology monitoring component works
correctly: although nodes move with the storage nodes such that the performance does not degrade
much

Elect of node failures in k-out-of-n data processing

This section investigates how the failures of processor nodes affect the energy efficiency, job
completion time, and job completion rate. We first define how Greedy and Random work for data
processing. In Greedy, each task is replicated to n-k+1 processor nodes that have the lowest energy
consumption for retrieving the task, and given a task, nodes that require lower energy for retrieving the
task are scheduled earlier. In Random, the processor nodes are selected randomly and each task is also
replicated to n-k+1 processor nodes randomly. We consider two failure models: fail-fast and fail-slow.
In the fail-fast model, a node fails at the first time slot and cannot complete any task, while in the fail-
slow model, a node may fail at any time slot, thus being able to complete some of its assigned tasks
before the failure.

We observe that the energy consumption is not sensitive to the number of node failures. When there
is a node failure, a task may be executed on a less optimal processor node and causes higher energy
consumption. However, this difference is small due to the following reasons. First, given a task,
because it is replicated to n-k+1 processor nodes, failing an arbitrary processor may
Elect of node failure on completion ratio with fail-fast have no elect on the execution time of this task
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at all. Second, even if a processor node with the task fails, this task might have completed before the
time of failure. As a result, the energy difference caused by failing an additional node is very small. In
the fail-fast model, a failure always abets all the tasks on a processor node, so its energy consumption
increases faster than the fail-slow model.

We see that the com-plebian ratio is 1 when no more than n — k nodes fail. Even when more than n —
k nodes fail, due to the same reasons explained previously, there is still chance that all M tasks
complete (tasks may have completed before the time the node fails). In general, for any scheme, the
completion ratio of the fail-slow model is higher than the completion ratio of the fail-fast model.

An interesting observation is that Greedy has the highest completion ratio. In Greedy, the load on
each node is highly uneven, i.e., some processor nodes may have many tasks but some may not have
any task. This allocation strategy achieves high completion ratio because all tasks can complete as long
as one such high load processor nodes can finish all its assigned tasks. In our simulation, about 30% of
processor nodes in Greedy are assigned all M tasks. Analytically, if three of the ten processor nodes
contain all M tasks, the probability of completion when 9 processor nodes fail We note that load-
balancing are energy-efficiency and fault-tolerance, we leave the more complicated load-balancing
problem formulation for future work.

The reason is that both Greedy and KNF try to minimize the energy at the cost of longer completion
time. Some processor nodes may need to execute much more tasks because they consume lower energy
for retrieving those tasks compared to others. On the other hand, Random spreads tasks to all processor
nodes evenly and thus results in lowest completion time.

5.5 Elect of scheduling

When the tasks are not scheduled, all processing nodes try to execute the assigned tasks
immediately. Since each task is replicated to n — k + 1 times, multiple instances of a same task may
execute simultaneously on deferent nodes. Although concurrent execution of a same task wastes
energy, it achieves lower job completion time. This is because when there is node failure, the failed
task still has a chance to be completed on other processing node in the same time slot, without affecting
the job completion time. On the other hand, because our scheduling algorithm avoids executing same
instances of a task con-currently, the completion time will always be delayed whenever there is a task
failure. Therefore, scheduled tasks always achieve minimal energy consumption while unscheduled
tasks complete the job in shorter time. The system reliability, or the completion

Related Work

Some researchers proposed solutions for achieving higher reliability in dynamic networks. Dimakis et
al. proposed several erasure coding algorithms for main-training a distributed storage system in a
dynamic network [11]. Leong et al. proposed an algorithm for optimal data allocation that maximizes
the recovery probability [12]. Aguilera et al. proposed a protocol to ly adopt erasure code for better
reliability [13]. These solutions, however, focused only on system reli-ability and do not consider
energy efficiency.

Several works considered latency and communication costs. A lechery and Lakshman proposed a 2-
approx algorithm for selecting optimal data centers [14]. Be-loglazov et al. solved the similar problem
by applying their Modified Best Fit Decreasing algorithm [15]. Liu et al. proposed an Energy-
Scheduling (DEES) algorithm that saves energy by integrating the process of scheduling tasks and data
placement [16]. [17] proposed cloudlet seeding, a strategic placement of high performance computing
assets in wireless ad-hoc network such that computational load is balanced. Most of these solutions,
however, are designed for powerful servers in a static network. Our solution focuses on resource-
constrained mobile devices in a dynamic net-work.

Storage systems in ad-hoc networks consisting of mobile devices have also been studied. STACEE
uses edge devices such as laptops and network storage to create a P2P storage system.
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They designed a scheme that minimizes energy from a system perspective and simultaneously
maximizes user satisfaction [18]. Mo-biCloud treats mobile devices as service nodes in an ad-hoc
network and enhances communication by ad-dressing trust management, secure routing, and risk
management issues in the network [19]. WhereStore is a location-based data store for Smart phones
interacting with the cloud. It uses the phone’s location history to determine what data to replicate
locally [20]. Segank considers a mobile storage system designed to work in a network of non-uniform
quality.

Distribute data and process the distributed data in a dynamic network. Both the distributed data and
processing tasks are allocated in an energy- and reliable manner, but how to optimally schedule the task
to further reduce energy and job makespan is not considered. Compared with the previous two works,
this paper propose an k-out-of-n task scheduling algorithm that reduces the job completion time and
minimizes the energy wasted in executing duplicated tasks on multiple processor nodes. Furthermore,
the trade between the system reliability and the over-head, in terms of more storage space and
redundant tasks, is analyzed.

Cloud computing in a small-scale network with battery-powered devices has also gained attention
re-cently. Cloudlet is a resource-rich cluster that is well-connected to the Internet and is available for
use by nearby mobile devices.

A mobile device delivers a small Virtual Machine (VM) overlay to a cloudlet infrastructure and lets it
take over the computation. Similar works that use VM migration are also done in Clone Cloud [2] and
Think Air [3]. MAUI uses code portability provided by Common Language Runtime to create two
versions of an application: one runs locally on mobile devices and the other runs remotely.

MAUI determines which processes to be clone loaded to remote servers based on their CPU usages.
Serendipity considers using remote computational resource from other mobile devices [4]. Most of
these works focus on minimizing the energy, but do not address system reliability.

Conclusions

We presented the first k-out-of-n framework that jointly addresses the energy-efficiency and fault-
tolerance challenges. It assigns data fragments to nodes such that other nodes retrieve data reliably with
minimal energy consumption. It also allows nodes to process distributed data such that the energy
consumption for processing the data is minimized. Through system implementation, the feasibility of
our solution on real hardware was validated. Extensive simulations in larger scale networks proved the
effectiveness of our solution
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