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ABSTRACT 
 

Despite the advances in hardware for hand-held mobile devices, resource-intensive applications (e.g., video and 

image storage and processing or map-reduce type) still remain bounds since they require large computation and 

storage capabilities. Recent research has attempted to address these issues by employing remote servers, such as 

clouds and peer mobile devices.  For mobile devices deployed in dynamic networks (i.e., with frequent topology 

changes because of node failure/unavailability and mobility as in a mobile cloud), however, challenges of Reliability 

and energy EFFICIENCY remain largely unaddressed. To the best of our knowledge, we are the first to address these 

challenges in an integrated manner for both data storage and processing in mobile cloud, an approach we call k-out-

of-n computing. In our solution, mobile devices successfully retrieve or process data, in the most energy- way, as long 

as k out of n remote servers are accessible. Through a real system implementation we prove the feasibility of our 

approach. Extensive simulations demonstrate the fault tolerance and energy efficiency performance of our 

framework in larger scale networks. 

 

Index Terms—Mobile Computing, Cloud Computing, Mobile Cloud, Energy- Computing, Fault-
Tolerant Computing. 
   

Introduction 
     Personal   mobile  devices  have  gained  enormous popularity  in  recent  years.  Due  to  their  
limited resources  (e.g.,  computation,  memory,  energy),  how-ever, executing  sophisticated 
applications (e.g., video and image storage and processing, or map-reduce type) on  mobile  devices  
remains  challenging.  As  a  result, many  applications  rely  on  off loading  all  or  part  of their  
works  to  ―remote  servers‖ as clouds  and peer mobile devices. For instance, applications such as 
Google  goggle  and  Sire  process  the  locally  collected data  on  clouds.  Going  beyond  the  
traditional  cloud-based scheme, recent research has proposed to processes  on  mobile  devices  by  
migrating  a  Virtual Machine (VM) overlay to nearby infrastructures   [1], [2], [3]. This strategy 
essentially allows off loading any process or application,  but  it  requires  a  complicated VM 
mechanism and a stable network connection. Some systems (e.g., Serendipity [4]) even leverage peer 
mobile devices as remote  servers  to  complete  computation-intensive job. 
 
     In dynamic networks, e.g., mobile cloud for disaster response or military operations [5], when 
selecting remote servers, energy consumption for accessing them must be minimized while taking into 
account the dynamically changing topology. Serendipity and other VM-based solutions considered the 
energy cost for processing a task on mobile devices and off loading a task to the remote servers, but 
they did not con-side the scenario in a multi-hop and dynamic network where the energy cost for 
relaying/transmitting packets is significant. Furthermore, remote servers are often inaccessible because 
of node failures, unstable links, or node-mobility, raising a reliability issue. Although Serendipity 
considers intermittent connections, node failures are not taken into account; the VM-based solution 
considers only static networks and is difficult to deploy in dynamic environments. 
 

   In this article, we propose the first framework to sup-port fault-tolerant and energy- remote storage 
& processing under a dynamic network topology, i.e., mobile cloud. Our framework aims for 
applications that require energy- and reliable distributed data storage & processing in dynamic network. 
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E.g., military operation or disaster response. We integrate the k-out-of-n reliability mechanism into 
distributed computing in mobile cloud formed by only mobile devices. k-out-of-n, a well-studied topic 
in reliability control [6], ensures that a system of n components operates 

   Correctly as long as k or more components work. More specifically, we investigate how to store 
data as well as process the stored data in mobile cloud with k-out-of-n reliability such that: 1) the 
energy consumption for retrieving dis-tributed data is minimized; 2) the energy consumption for 
processing the distributed data is minimized; and 3) data and processing are distributed considering dy-
namic topology changes.In our proposed framework, a data object is encoded and partitioned into n 
fragments, and then stored on n different nodes. As long as k or more of the n nodes are available, the 
data object can be successfully recovered. Similarly, another set of n nodes are assigned tasks for 
processing the stored data and all tasks can be completed as long as k or more of the n processing nodes 
finish the assigned tasks. The parameters k and n determine the degree of reliability and different (k, n) 
pairs may be assigned to data storage and data processing. System administrators select these 
parameters based on their reliability requirements. The contributions of this article are as follows: 

• It presents a mathematical model for both optimizing energy consumption and meeting the fault 
tol-erance requirements of data storage and processing under a dynamic network topology.  

• It presents an  algorithm for estimating the communication cost in a mobile cloud, where nodes fail 
or move, joining/leaving the network.  

• It presents the first process scheduling algorithm that is both fault-tolerant and energy .  
• It presents a distributed protocol for continually monitoring the network topology, without requir-

ing additional packet transmissions.  
  It presents the evaluation of our proposed frame-work through a real hardware implementation and 
large scale simulations.  
 
The article is organized as follows:  
     Section 2 intro-duces the architecture of the framework and the math-ematical formulation of the 
problem. Section 3 describes the functions and implementation details of each com-ponent in the 
framework. In section 4, an application that uses our framework (i.e., a mobile distributed file system – 
MDFS) is developed and evaluated. Section 5 presents the performance evaluation of our k-out-of-n 
framework through extensive simulations. Section 6 reviews the state of art. We conclude in Section . 
 
Architecture and Formulations  
     An overview of our proposed framework is depicted in Figure 1. The framework, running on all 
mobile nodes, provides services to applications that aim to: 
(1) store data in mobile cloud reliably such that the energy consumption for retrieving the data is 
minimized (k-out-of-n data allocation problem); and (2) reliably process the stored data such that 
energy consumption for processing the data is minimized (k-out-of-n data processing problem). As an 
example, an application running in a mobile ad-hoc network may generate a large amount of media 
files and these files must be stored reliably such that they are recoverable even if certain nodes fail. At 
later time, the application may make queries to files for information such as the number of times an 
object appears in a set of images. Without loss of generality, we assume a data object is stored once, but 
will be retrieved or accessed for processing multiple times later. 

We first define several terms. As shown in Figure 1, applications generate data and our framework 
stores data in the network. For higher data reliability and availability, each data is encoded and 
partitioned into  
 
     Architecture for integrating the k-out-of-n com-puting framework for energy efficiency and fault-
tolerance. The framework is running on all nodes and it provides data storage and data processing 
services to applications, e.g., image processing, Hadoop.  
 
Fragments 
     The fragments are distributed to a set of storage nodes. In order to process the data, applications 
provide functions that take the stored data as inputs. Each function is instantiated as multiple tasks that 
pro-cess the data simultaneously on different nodes. Nodes executing tasks are processor nodes; we call 
a set of tasks instantiated from one function a job. Client nodes are the nodes requesting data allocation 
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or processing operations. A node can have any combination of roles from: storage node, processor 
node, or client node, and any node can retrieve data from storage nodes.  
 
      As shown in Figure 1, our framework consists of five components: Topology Discovery and 
Monitoring, Failure Probability Estimation, Expected Transmission Time (ETT) Computation, k-out-
of-n Data Allocation and k-out-of-n Data Processing. When a request for data allocation or processing 
is received from applications, the Topology Discovery and Monitoring component provides network 
topology information and failure probabilities of nodes. The failure probability is estimated by the 
Failure Probability component on each node. Based on the retrieved failure probabilities and network 
topology, the ETT Computation com-ponent computes the ETT matrix, which represents the expected 
energy consumption for communication between any pair of node. Given the ETT matrix, our 
framework finds the locations for storing fragments or executing tasks. The k-out-of-n Data Storage 
compo-nent partitions data into n fragments by an erasure code algorithm and stores these fragments in 
the network such that the energy consumption for retrieving k fragments by any node is minimized. k is 
the minimal number of fragments required to recover a data. If an application needs to process the data, 
the k-out-of-n Data Processing component creates a job of M tasks and schedules the tasks on n 
processor nodes such that the energy consumption for retrieving and processing these data is 
minimized. 
 
     This component ensures that all tasks complete as long as k or more processor nodes finish their 
assigned tasks. The Topology Discovery and Monitoring component continuously monitors the net-
work for any significant change of the network topology.  It starts the Topology Discovery when 
necessary. 
Preliminaries 
       Having explained the overall architecture of our frame-work, we now present design primitives for 
the k-out-of-n data allocation and k-out-of-n data processing. We consider a dynamic network with N 
nodes denoted by a set V = {v1 , v2 , ..., vN }. 
We assume nodes are time synchronized. For convenience, we will use i and vi interchangeably 
hereafter. The network is modeled as a graph G = (V, E), where E is a set of edges indicating the 
communication links among nodes. Each node has an associated failure probability P [fi] where fi is the 
event that causes node vi to fail. 
 
Relationship Matrix 
     R is a N × N matrix defining the relationship between nodes and storage nodes. More precisely, each 
element Rij is a binary variable – if Rij is 0, node i will not retrieve data from storage node j; if Rij is 1, 
node i will retrieve fragment from storage node j.\ 
 
Storage node list 
     X is a binary vector containing storage nodes, i.e., Xi = 1 indicates that vi is a storage node 
 
Expected Transmission Time Matrix 
     The D is defined as a N ×N matrix where element Dij corresponds to the ETT for transmitting a fixed 
size packet from node i to node j considering the failure probabilities of nodes in the network, i.e., 
multiple possible paths between node i and node j. 
 
    The ETT metrix has been widely used for estimating transmission time between two nodes in one 
hop. We assign each edge of graph G a positive estimated transmission time. Then, the path with the 
shortest transmission time between any two nodes can be found.  
 
Scheduling Matrix 

   S is an L × N × M matrix where element Slij = 1 indicates that task j is scheduled at time l on node i; 
otherwise, Slij = 0. l is a relative time referenced to the starting time of a job. Since all tasks are 
instantiated from the same function, we assume they spend approximately the same processing time on 
any node. Given the terms and notations, we are ready to formally describe the k-out-of-n data 
allocation and k-out-of-n data processing problems. 
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Formulation of k-out-of-n Data Allocation Problem 
     In this problem, we are interested in finding n storage nodes denoted by S = {s1 , s2 , ...sn } , S ⊆ V 
such that, Given the failure probability of all nodes, we calculate the ETT matrix D. However, if failure 
probabilities of all nodes are taken into account, the number of possible graphs is extremely large, e.g., 
a total of 2

N
 possible graphs, as each node can be either in failure or non-failure state. Thus, it is 

infeasible to deterministically calculate ETT matrix when the network size is large. 
 
Importance Sam-pling technique 
     one of the Monte Carlo methods, to approximate ETT. The Importance Sampling allows us to 
approximate the value of a function by evaluating multiple samples drawn from a sample space with 
known probability distribution. In our scenario, the probability distribution is found from the failure 
probabilities calculated previously and samples used for simulation are snapshots of the network graph 
with each node either fails or survives. The function to be approximated is the ETT matrix, D. Then, a 
set of sample graphs can be defined as a multivariate Bernoulli random variable .  
     The first constraint (Eq 2) selects exactly n nodes as storage nodes; the second constraint (Eq 3) 
indicates that each node has access to k storage nodes; the third constraint (Eq 4) ensures that j

th
 column 

of R can have a non-zero element if only if Xj is 1; and constraints (Eq 5) are binary requirements for 
the decision variables. 
 
Formulation   of   k-out-of-n   Data   Processing Problem 
     The objective of this problem is to find n nodes in V as processor nodes such that energy 
consumption for processing a job of M tasks is minimized. In addition, it ensures that the job can be 
completed as long as k or more processors nodes finish the assigned tasks. Before a client node starts 
processing a data object, assuming the correctness of erasure coding, it first needs to retrieve and 
decode k data fragments because nodes can only process the decoded plain data object, but not the 
encoded data fragment. 
In general, each node may have different energy cost depending on their energy sources; e.g., nodes 
attached to a constant energy source may have zero energy cost while nodes powered by battery may 
have relatively high energy cost. For simplicity, we assume the network is homogeneous and nodes 
consume the same amount of energy for processing the same task. As a result, only the transmission 
energy affects the energy efficiency of the final solution. We leave the modeling of the general case as 
future work. 
 

  We define some func-tions: (1) f1 (i) returns 1 if node i in S has at least one task; otherwise, it 
returns 0; (2) f2(j) returns the num-ber of instances of task j in S; and (3) f3 (z, j) returns the transmission 
cost of task j when it is scheduled for the z

th
 time. We now formulate the k − out − of − n data 

processing problem as shown in Eq 6 - 11. The objective function (Eq 6) minimizes the total 
transmission cost for all processor nodes to retrieve their tasks. l represents the time slot of executing a 
task; i is the index of nodes in the network; j is the index of the task of a job.  
 
Data RetrievalrTime Matrix is a N × M matrix, where the element Tij  corresponds to the estimated 
time for node i to retrieve task j. T 

r
 is computed by summing the transmission time (in terms of ETT 

available in D) from node i to its k closest storage nodes of the task. 
     
    The first constraint ensures that n nodes in the network are selected as processor nodes. The second 
constraint (Eq 8) indicates that each task is replicated n − k + 1 times in the schedule such that any 
subset of k processor nodes must contain at least one instance of each task.  
 
The third constraint states that each task is replicated at most once to each processor node. The fourth 
constraint (Eq 10) ensures that no duplicaFailure Probability Estimation 
     We assume a fault model in which faults caused only by node failures and a node is inaccessible and 
cannot is  a  time  interval  during  which the  estimated failure probability  is  effective.   
 
A  node  estimates  its  failure probability based on the  following events/causes: energy  depletion,  
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temporary  disconnection  from  a  net- time  t + T ,  where  work  (e.g.,  due  to  mobility),  and  
application-specific We assume that these events happen indecent- factors. 
 
Energy  and Fault Tolerant Data 
Allocation and Processing 
     This section presents the details of each component in our framework.  
 
Topology Discovery  
     Topology Discovery is executed during the network initialization phase or whenever a significant 
change of the network topology is detected (as detected by the Topology Monitoring component).  
 
During Topol-ogy Discovery, one delegated node floods a request packet throughout the network. 
Upon receiving the request packet, nodes reply with their neighbor tables and failure probabilities. 
Consequently, the delegated node obtains global connectivity information and fail-ure probabilities of 
all nodes. This topology information can later be queried by any node. 
 
Failure by Temporary Disconnection 
     Nodes can be temporarily disconnected from a network, e.g., because of the mobility of nodes, or 
simply when users turn off the devices. The probability of temporary disconnection differs from 
application to application, but this information can be inferred from the history: a node gradually learns 
its behavior of disconnection and cumulatively creates a probability distribution of its disconnection. 
Then, given the current time t, we can estimate the probability that a node is disconnected 
from the network by the time t + T as follows: P fi

C
 = P [Node i disconnected between t and t + T ]. 

 
Failure by Application-dependent Factors 
     Some applications require nodes to have different roles. In a military application for example, some 
nodes are equipped with better defense capabilities and some nodes may be placed in high-risk areas, 
rendering differ-ent failure probabilities among nodes. Thus, we define the failure probability P [fi

A
 ] 

for application-dependent factors. This type of failure is, however, usually explic-itly known prior to 
the deployment. 
 
Expected Transmission Time Computation 
     It is known that a path with minimal hop-count does not necessarily have minimal end-to-end delay 
because a path with lower hop-count may have noisy links, resulting in higher end-to-end delay. 
Longer delay im-plies higher transmission energy. As a result, when distributing data or processing the 
distributed data, we consider the most energy- paths – paths with minimal transmission time. When we 
say path p is the shortest path from node i to node j, we imply that path p has the lowest transmission 
time (equivalently, lowest energy consumption) for transmitting a packet from node i to node j. The 
shortest distance then implies the lowest transmission time Given the failure probability of all nodes, 
we calculate the ETT matrix D. However, if failure probabilities of all nodes are taken into account, the 
number of possible graphs is extremely large, e.g., a total of 2

N
 possible graphs, as each node can be 

either in failure or non-failure state. Thus, it is infeasible to deterministically calculate ETT matrix 
when the network size is large.  
 
To address this issue, we adopt the Importance Sam-pling technique, one of the Monte Carlo methods, 
to approximate ETT. The Importance Sampling allows us to approximate the value of a function by 
eval-uating multiple samples drawn from a sample space with known probability distribution. In our 
scenario, the probability distribution is found from the failure probabilities calculated previously and 
samples used for simulation are snapshots of the network graph with each node either fails or survives. 
The function to be approximated is the ETT matrix, D. A sample graph is obtained by considering each 
node as an independent Bernoulli trial, where the suc-cess probability for node i is defined as: pXi (x) = 
Ni=1 pXi  (x). x1 , x2 , ..., xn  are the binary outcomes of Bernoulli experiment on each node. b is an 1 × N 
vector representing one sample graph and b [i] in binary indicating whether node i survives or fails in 
sample b. Having defined our sample, we determine the number of required Bernoulli samples by 
checking the variance of the ETT matrix denoted by V ar (E [D (B)]), where the ETT matrix E [D  
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     Carlo Simulation.  The  simulation continues until V ar  D (B)  is less than dist  varth , a user defined 
threshold depending on how accurate the approximation has to be. We chose dist varth to be 10% of the 
smallest node-to-node distance in D (B). Figure 2 compares the ETT found by Importance Sampling 
with the true ETT found by a brute force method in a network of 16 nodes.  
 
K-out-of-n Data Allocation 
     After the ETT matrix is computed, the k-out-of-n data allocation is solved by ILP solver. A simple 
example of how the ILP problem is formulated and solved is shown here. Considering Figure 2(b), 
distance Matrix D is a 4 × 4 symmetric matrix with each component Dij indicating the expected 
distance between node i and node j. Let’s assume the expected transmissions time on all edges are 
equal to 1 As an example, D23 is calculated by finding the probability of two possible paths: 2 → 1 → 3 
or 2 → 4 → 3. The probability of 2 → 1 → 3 is 0.8 × 0.8 × 0.9 × 0.4 = 0.23 and the probability of 2 → 
4 → 3 is 0.8 × 0.6 × 0.9 × 0.2 = 0.08. Another possible case is when all nodes survive and either path 
may be taken. This probability is 0.8 × 0.8×0.6×0.9 = 0.34. The probability that no path exists between 
node 2 and node 3 is (1-0.23-0.08-0.34=0.35). 
 
 
K-out-of-n Data Processing 
     The k-out-of-n data processing problem is solved in two stages – Task Allocation and Task 
Scheduling. In the Task Allocation stage, n nodes are selected as processor nodes; each processor node 
is assigned one or more tasks; each task is replicated to n − k + 1 different processor nodes. An example 
is shown in Figure 3(a). However, not all instances of a task will be executedonce an instance of the 
task completes, all other instances will be canceled. The task allocation can be formulated as an ILP as 
shown in Eqs 12 - 16. In the formulation, Rij is a N ×M matrix which predefines the relationship 
between processor nodes and tasks; each element Rij is a binary variable indicating whether taskj is 
assigned to processor node i. X is a binary vector containing processor nodes, i.e., Xi = 1 indicates that 
vi is a processor node. The objective function minimizes the transmission time for n processor nodes to 
retrieve all their tasks. The first constraint (Eq 13) indicates that n of the N nodes will be selected as 
processor nodes. The second constraint (Eq 14) replicates each task to (n − k + 1) different processor 
nodes. The third constraint (Eq 15) ensures that the j

th
 column of R can have a non-zero element if only 

if Xj is 1; and the constraints (Eq 16) are binary requirements for the decision variables. 
 Once processor nodes are determined, we proceed to the Task Scheduling stage. In this stage, the 

tasks assigned to each processor node are scheduled such that the energy and time for finishing at least 
M distinct tasks is minimized, meaning that we try to shorten the job completion time while minimizing 
the overall energy consumption. The problem is solved in three steps. First, we find the minimal energy 
for executing M distinct tasks in Rij . Second, we find a schedule with the minimal energy that has the 
shortest completion time. As shown in Figure 3(b), tasks 1 to 3 are scheduled on different nodes at time 
slot 1; however, it is also possible that tasks 1 through 3 are allocated on the same node, but are 
scheduled in different time slots, as shown in Figure 3(c) and 3(d). These two steps are repeated n-k+1 
times and M distinct tasks are scheduled upon each iteration. The third step is to shift tasks to earlier 
time slots. A task can be moved to an earlier time slot as long as no duplicate task is running at the 
same time, e.g., in Figure 3(d), task 1 on node 6 can be safely moved to time slot 2 because there is no 
task 1 scheduled at time slot 2.The ILP problem shown in Equations 17 - 20 finds M unique tasks from 
Rij that have the minimal trans-mission cost. The decision variable W is an N × M matrix where Rij = 1 
indicates that task j is selected to be executed on processor node i. The first constraint (Eq 18) ensures 
that each task is scheduled exactly one time. The second constraint (Eq 19) indicates that Wij can be set 
only if task j. is allocated to node i in Rij 
 
An overview of improved MDFS 

  The Topology Monitoring component is simple yet energy-efficient as it does not incur significant 
communication overhead – it simply piggybacks node ID on a beacon message. The protocol is 
depicted in Algorithm 2. We predefine one node as a topology delegate Vdel who is responsible for 
maintaining the global topol-ogy information. If p of a node is greater than the threshold τ1 , the node 
changes its state to U and piggybacks its ID on a beacon message. Whenever a node with state U finds 
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that its p becomes smaller than τ1 , it changes its state back to N U and puts −ID in a beacon message. 
Upon receiving a beacon message, nodes check the IDs in it. For each ID, nodes add the ID to set ID if 
the ID is positive; otherwise, remove the ID. If a client node finds that the size of set ID becomes 
greater than τ2 , a threshold for ―significant‖ global topology change, the node notifies Vdel ; and Vdel 
executes the Topology Discovery protocol. To reduce the amount of traffic, client nodes request the 
global topology from Vdel , instead of running the topology dis-covery by themselves. After Vdel 
completes the topology update, all nodes reset their status variables back to N U and set p = 0. 
 
System Evaluation  
     This section investigates the feasibility of running our framework on real hardware. We compare the 
perfor-mance of our framework with a random data allocation and processing scheme (Random), which 
randomly se-lects storage/processor nodes. Specifically, to evaluate the k-out-of-n data allocation on 
real hardware, we implemented a Mobile Distributed File System (MDFS) on top of our k-out-of-n 
computing framework. We also test our k-out-of-n data processing by implementing a face recognition 
application that uses our MDFS. 

  Each file is encrypted and encoded by erasure coding into n1 data fragments, and the secret key for 
the file is decomposed into n2 key fragments by key sharing algorithm. Any maximum distance 
separable code can may be used to encoded the data and the key; in our experiment, we adopt the well-
developed Reed-Solomon code and Shamir’s Secret Sharing algorithm. The n1 data fragments and n2 
key fragments are then distributed to 

    
  Current consumption on Smartphone in different states nodes in the network. When a node needs to 

access a file, it must retrieve at least k1 file fragments and k2 key fragments. Our k-out-of-n data 
allocation allocates file and key fragments optimally when compared with the state-of-art [10] that 
distributes fragments uniformly to the network. Consequently, our MDFS achieves higher reliability 
(since our framework considers the possible failures of nodes when determining storage nodes) and 
higher energy efficiency (since storage nodes are selected such that the energy consumption for 
retrieving data by any node is minimized). We implemented our system on HTC Evo 4G Smart-phone, 
which runs Android 2.3 operating system us-ing 1G Scorpion CPU, 512MB RAM, and a Wi-Fi 802.11 
b/g interface. To enable the Wi-Fi AdHoc mode, we rooted the device and modified a config file – wpa 
supplicant.conf. The Wi-Fi communication range on HTC Evo 4G is 80-100m. Our data allocation was 
programmed with 6,000 lines of Java and C++ code. 
      
     The experiment was conducted by 8 students who carry smartphones and move randomly in an open 
space. These smartphones formed an Ad-Hoc network and the longest node to node distance was 3 
hops. Students took pictures and stored in our MDFS. To evaluate the k-out-of-n data processing, we 
designed an application that searches for human faces appearing in all stored images. One client node 
initiates the process-ing request and all selected processor nodes retrieve, decode, decrypt, and analyze 
a set of images. In average, it  
Reliability with respect to different k/n ratio and failure probability stream, the time may increase in an 
order of magnitude. The peak memory usage of our application was around 3MB. In addition, for a 
realistic energy consumption model in simulations, we profiled the energy consump-tion of our 
application (e.g., WiFi-idle, transmission, re-ception, and 100%-cpu-utilization). Figure 5 shows our 
experimental setting and Figure 6 shows the energy pro-file of our smartphone in different operating 
states. It shows that Wi-Fi component draws significant current during the 
communication(sending/receiving packets) and the consumed current stays constantly high during the 
transmission regardless the link quality 

   
  We encoded it with different k values while keeping parameter n = 8. The left y-axis is the size of 

each encoded fragment and the right y-axis is the percentage of the overhead. Figure 8 shows the 
system reliability with respect to different k while n is constant. As expected, smaller k/n ratio achieves 
higher reliability while incurring more storage overhead. An interesting observation is that the change 
of system reliability slows down at k = 5 and reducing k further does not improve the reliability much. 
Hence, k = 5 is a reasonable choice where overhead is low (≈ 60% of overhead) and the reliability is 
high(≈ 99% of the highest possible reliability). 
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To validate the feasibility of running our framework on a commercial Smartphone, we measured the 

ex-ecution time of our MDFS application in Figure 9. For this experiment we varied network size N 
and set n = ⌈0.6N  
Fig. 10. Execution time of different components with respect to various network size. File retrieval 
time of Random and our algorithm (KNF) is also compare here 
n2 = n. As shown, nodes spent much longer time in dis-tributing/retrieving fragments than other 
components such as data encoding/decoding. We also observe that the time for distributing/retrieving 
fragments increased with the network size. This is because fragments are more sparsely distributed, 
resulting in longer paths to distribute/retrieve fragments. We then compared the data retrieval time of 
our algorithm with the data re-trieval time of random placement. Figure 10 shows that our framework 
achieved 15% to 25% lower data retrieval time than Random. To validate the performance of our k-out-
of-n data processing, we measured the completion rate of our face-recognition job by varying the 
number of failure node. The face recognition job had an average completion rate of 95% in our 
experimental setting  
 
Simulation Results  
     We conducted simulations to evaluate the performance of our k-out-of-n framework (denoted by 
KNF) in larger scale networks We consider a network of 400×400m

2
 where up to 45 mobile nodes are 

randomly deployed. networks. We consider a network of 400×400m
2
 where up to 45 mobile nodes are 

randomly deployed. The communication range of a node is 130m, which is measured on our 
smartphones. Two different mobility models are tested – Markovian Waypoint Model and Reference 
Point Group Mobility (RPGM). Markovian Waypoint is similar to Random Waypoint Model, which 
randomly selects the waypoint of a node, but it accounts for the current waypoint when it determines 
the next waypoint. RPGM is a group mobility model. 
     
     Subset of leaders are selected; each leader moves based on Markovian Waypoint model and other 
non-leader nodes follow the closest leader. Each mobility trace contains 4 hours of data with 1Hz 
sampling rate. Nodes beacon every 30 seconds We compare our KNF with two other schemes – a 
greedy algorithm (Greedy) and a random placement algorithm (Random). Greedy selects nodes with 
the largest number of neighbors as storage/processor nodes because nodes with more neighbors are 
better can-didates for cluster heads and thus serve good facil-ity nodes. Random selects storage or 
processor nodes randomly. The goal is to evaluate how the selected storage nodes impact the 
performance. We measure the following metrics: consumed energy for retrieving data, consumed 
energy for processing a job, data retrieval rate, completion time of a job, and completion rate of a job. 
We are interested in the effects of the following parameters – mobility model, node speed, k/n ratio, τ2 , 
and number of failed nodes, and scheduling. The default values for the parameters are: N = 26, n = 7, k 
= 4, τ1 = 3, τ2 = 20; our default mobility model is RPGM with node-speed 1m/s. A node may fail due to 
two independent factors: depleted energy or an application-dependent failure probability; specifically, 
the energy associated with a node decreases as the time elapses, and thus increases the failure 
probability. Each node is assigned a constant application-dependent failure probability. 
 

  We first perform simulations for k-out-of-n data al-location by varying the first four parameters and 
then simulate the k-out-of-n data processing with different number of failed nodes. We evaluate the 
performance of data processing only with the number of node failures because data processing relies on 
data retrieval and the performance of data allocation directly impacts the performance of data 
processing. If the performance of data allocation is already bad, we can expect the performance of data 
processing will not be any better. 

 
The simulation is performed in Matlab. The energy profile is taken from our real measurements on 
smart-phones; the mobility trace is generated according to RPGM mobility model; and the linear 
programming problem is solved by the Matlab optimization toolbox 
 
Elect of Mobility  
     In this section, we investigate how mobility models affect different data allocation schemes. Figure 
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11 depicts the results. An immediate observation is that mobility causes nodes to spend higher energy 
in retrieving data compared with the static network. It also shows that the energy consumption for 
RPGM is smaller than that for Markov. The reason is that a storage node usually serves the nodes in its 
proximity; thus when nodes move in a group, the impact of mobility is less severe than when all nodes 
move randomly. In all scenarios, KNF consumes lower energy than others. 
 
Elect of k/n Ratio  
     Parameters k and n, set by applications, determine the degree of reliability. Although lower k/n ratio 
provides higher reliability, it also incurs higher data redundancy. In this section, we investigate how the 
k/n ratio (by varying k) influences different resource allocation schemes. Figure 12 depicts the results. 
The data retrieval rate decreases for all three schemes when k is increased. It is because, with larger k, 
nodes have to access more storage nodes, increasing the chances of failing to retrieve data fragments 
from all storage nodes. However, since our solution copes with dynamic topology changes, it still 
yields 15% to 25% better retrieval rate than the other two schemes. 
 

   One observation is that the consumed energy for Random does not increase much compared with 
the other two schemes.  
KNF and Greedy, for Random, storage nodes are ran-domly selected and nodes choose storage nodes 
ran-domly to retrieve data; therefore, when we run the experiments multiple times with different 
random selections of storage nodes, we eventually obtain a similar average energy consumption. In 
contrast, KNF and Greedy select storage nodes based on their specific rules; thus, when k becomes 
larger, client nodes have to communicate with some storage nodes farther away, leading to higher 
energy consumption.  
 
     Although lower k/n is beneficial for both retrieval rate and energy efficiency, it requires more 
storage and longer data distribution time. A 1MB file with k/n = 0.6 in a network of 8 nodes may take 
10 seconds or longer to be distributed (as shown in Figure10). 
 
Elect of τ2  and Node Speed  
      We can see that smaller τ2 allows for higher retrieval rates. The main reason is that smaller τ2 causes 
KNF to update the placement more frequently. We are aware that smaller τ2 incurs overhead for 
relocating data fragments, but as shown in Figure 15, energy consumption for smaller τ2 is still lower 
than that for larger τ2 . The reasons are, first, energy consumed for relocating data fragments is much 
smaller than energy consumed for in data retrieval; second, not all data fragments need to be relocated. 
Another interest-ing observation is that, despite higher node speed, both retrieval rates and consumed 
energy do not increase much. The results confirm that our topology monitoring component works 
correctly: although nodes move with the storage nodes such that the performance does not degrade 
much 
 
Elect of node failures in k-out-of-n data processing 
     This section investigates how the failures of processor nodes affect the energy efficiency, job 
completion time, and job completion rate. We first define how Greedy and Random work for data 
processing. In Greedy, each task is replicated to n-k+1 processor nodes that have the lowest energy 
consumption for retrieving the task, and given a task, nodes that require lower energy for retrieving the 
task are scheduled earlier. In Random, the processor nodes are selected randomly and each task is also 
replicated to n-k+1 processor nodes randomly. We consider two failure models: fail-fast and fail-slow. 
In the fail-fast model, a node fails at the first time slot and cannot complete any task, while in the fail-
slow model, a node may fail at any time slot, thus being able to complete some of its assigned tasks 
before the failure. 
 

  We observe that the energy consumption is not sensitive to the number of node failures. When there 
is a node failure, a task may be executed on a less optimal processor node and causes higher energy 
consumption. However, this difference is small due to the following reasons. First, given a task, 
because it is replicated to n-k+1 processor nodes, failing an arbitrary processor may 
Elect of node failure on completion ratio with fail-fast have no elect on the execution time of this task 
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at all. Second, even if a processor node with the task fails, this task might have completed before the 
time of failure. As a result, the energy difference caused by failing an additional node is very small. In 
the fail-fast model, a failure always abets all the tasks on a processor node, so its energy consumption 
increases faster than the fail-slow model. 
 
    We see that the com-plebian ratio is 1 when no more than n − k nodes fail. Even when more than n − 
k nodes fail, due to the same reasons explained previously, there is still chance that all M tasks 
complete (tasks may have completed before the time the node fails). In general, for any scheme, the 
completion ratio of the fail-slow model is higher than the completion ratio of the fail-fast model.  
 
     An interesting observation is that Greedy has the highest completion ratio. In Greedy, the load on 
each node is highly uneven, i.e., some processor nodes may have many tasks but some may not have 
any task. This allocation strategy achieves high completion ratio because all tasks can complete as long 
as one such high load processor nodes can finish all its assigned tasks. In our simulation, about 30% of 
processor nodes in Greedy are assigned all M tasks. Analytically, if three of the ten processor nodes 
contain all M tasks, the probability of completion when 9 processor nodes fail We  note  that  load-
balancing are energy-efficiency and fault-tolerance, we leave the more complicated load-balancing 
problem formulation for future work. 
 
     The reason is that both Greedy and KNF try to minimize the energy at the cost of longer completion 
time. Some processor nodes may need to execute much more tasks because they consume lower energy 
for retrieving those tasks compared to others. On the other hand, Random spreads tasks to all processor 
nodes evenly and thus results in lowest completion time. 

 
5.5 Elect of scheduling  
     When the tasks are not scheduled, all processing nodes try to execute the assigned tasks 
immediately. Since each task is replicated to n − k + 1 times, multiple instances of a same task may 
execute simultaneously on deferent nodes. Although concurrent execution of a same task wastes 
energy, it achieves lower job completion time. This is because when there is node failure, the failed 
task still has a chance to be completed on other processing node in the same time slot, without affecting 
the job completion time. On the other hand, because our scheduling algorithm avoids executing same 
instances of a task con-currently, the completion time will always be delayed whenever there is a task 
failure. Therefore, scheduled tasks always achieve minimal energy consumption while unscheduled 
tasks complete the job in shorter time. The system reliability, or the completion  
 
Related Work  
Some researchers proposed solutions for achieving higher reliability in dynamic networks. Dimakis et 
al. proposed several erasure coding algorithms for main-training a distributed storage system in a 
dynamic network [11]. Leong et al. proposed an algorithm for optimal data allocation that maximizes 
the recovery probability [12]. Aguilera et al. proposed a protocol to ly adopt erasure code for better 
reliability [13]. These solutions, however, focused only on system reli-ability and do not consider 
energy efficiency. 
 

Several works considered latency and communication costs. A lechery and Lakshman proposed a 2-
approx algorithm for selecting optimal data centers [14]. Be-loglazov et al. solved the similar problem 
by applying their Modified Best Fit Decreasing algorithm [15]. Liu et al. proposed an Energy- 
Scheduling (DEES) algorithm that saves energy by integrating the process of scheduling tasks and data 
placement [16]. [17] proposed cloudlet seeding, a strategic placement of high performance computing 
assets in wireless ad-hoc network such that computational load is balanced. Most of these solutions, 
however, are designed for powerful servers in a static network. Our solution focuses on resource-
constrained mobile devices in a dynamic net-work. 

 
Storage systems in ad-hoc networks consisting of mobile devices have also been studied. STACEE 

uses edge devices such as laptops and network storage to create a P2P storage system.  
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They designed a scheme that minimizes energy from a system perspective and simultaneously 
maximizes user satisfaction [18]. Mo-biCloud treats mobile devices as service nodes in an ad-hoc 
network and enhances communication by ad-dressing trust management, secure routing, and risk 
management issues in the network [19]. WhereStore is a location-based data store for Smart phones 
interacting with the cloud. It uses the phone’s location history to determine what data to replicate 
locally [20]. Segank considers a mobile storage system designed to work in a network of non-uniform 
quality. 
 

   Distribute data and process the distributed data in a dynamic network. Both the distributed data and 
processing tasks are allocated in an energy- and reliable manner, but how to optimally schedule the task 
to further reduce energy and job makespan is not considered. Compared with the previous two works, 
this paper propose an  k-out-of-n task scheduling algorithm that reduces the job completion time and 
minimizes the energy wasted in executing duplicated tasks on multiple processor nodes. Furthermore, 
the trade between the system reliability and the over-head, in terms of more storage space and 
redundant tasks, is analyzed. 

 
   Cloud computing in a small-scale network with battery-powered devices has also gained attention 

re-cently. Cloudlet is a resource-rich cluster that is well-connected to the Internet and is available for 
use by nearby mobile devices.   

A mobile device delivers a small Virtual Machine (VM) overlay to a cloudlet infrastructure and lets it 
take over the computation. Similar works that use VM migration are also done in Clone Cloud [2] and 
Think Air [3]. MAUI uses code portability provided by Common Language Runtime to create two 
versions of an application: one runs locally on mobile devices and the other runs remotely.  

 
 MAUI determines which processes to be clone loaded to remote servers based on their CPU usages. 

Serendipity considers using remote computational resource from other mobile devices [4]. Most of 
these works focus on minimizing the energy, but do not address system reliability. 
Conclusions 
     We presented the first k-out-of-n framework that jointly addresses the energy-efficiency and fault-
tolerance challenges. It assigns data fragments to nodes such that other nodes retrieve data reliably with 
minimal energy consumption. It also allows nodes to process distributed data such that the energy 
consumption for processing the data is minimized. Through system implementation, the feasibility of 
our solution on real hardware was validated. Extensive simulations in larger scale networks proved the 
effectiveness of our solution 
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