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ABSTRACT

Sparse image models treat color image pixels as scalar, it represents color channels separately or concatenate
color channels as a monochrome image. This paper proposes a novel sparse model for color image using
quaternion matrix analysis. It represents color image pixels as quaternion matrix. The proposed model
represents the color image as a quaternion matrix, where a quaternion-based dictionary learning algorithm is
presented using the K-quaternion singular value decomposition (QSVD) (generalized K-means clustering for
QSVD) method. It conducts the sparse basis selection in quaternion space, which uniformly transforms the
channel images to an orthogonal color space. In this new color space, it is significant that the inherent color
structures can be completely preserved during vector reconstruction. Moreover, the proposed sparse model is
more efficient comparing with the current sparse models for image restoration tasks due to lower redundancy
between the atoms of different color channels. The experimental results demonstrate that the proposed sparse
image model avoids the hue bias issue successfully and shows its potential as a general and powerful tool in
color image analysis and processing domain.

Keywords— Vector sparse representation, quaternion matrix analysis, color image, dictionary learning, K-QSVD,

image restoration.

I. INTRODUCTION

Super-resolution (SR) image reconstruction
is currently a very active area of research, as it offers
the promise of overcoming some of the inherent
resolution  limitations of low-cost imaging
sensors(e.g. cell phone or surveillance cameras)
allowing better utilization of the growing capability
of high-resolution displays (e.g. high-definition
LCDs). Such resolution-enhancing technology may
also prove to be essential in medical imaging and
satellite imaging where diagnosis or analysis from
low-quality images can be extremely difficult.
Conventional approaches to generating a super-
resolution image normally require as input multiple
low-resolution images of the same scene, which are
aligned with sub-pixel accuracy. The SR task is cast
as the inverse problem of recovering the original
high-resolution image by fusing the low-resolution
images, based on reasonable assumptions or prior
knowledge about the observation model that maps the
high-resolution image to the low-resolution ones. The
fundamental reconstruction constraint for SR is that
the recovered image, after applying the same

generation model, should reproduce the observed low
resolution images. However, SR image
reconstruction is generally a severely ill-posed
problem because of the insufficient number of low
resolution images, ill-conditioned registration and
unknown blurring operators, and the solution from
the reconstruction constraint is not unique. While
simple interpolation methods such as Bilinear or
Bicubic interpolation tend to generate overly smooth
images with ringing and jagged artifacts,
interpolation by exploiting the natural image priors
will generally produce more favorable results.
However, they are limited in modeling the visual
complexity of the real images.

For natural images with fine textures or
smooth shading, these approaches tend to produce
watercolor-like artifacts. A third category of SR
approach is based on machine learning techniques,
which attempt to capture the co-occurrence prior
between low-resolution and high-resolution image
patches.
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This approach is motivated by recent results
in sparse signal representation, which suggest that the
linear relationships among high-resolution signals
can be accurately recovered from their low-
dimensional projections. Although the super-
resolution problem is very ill-posed, making precise
recovery impossible, the image patch sparse
representation demonstrates both effectiveness and
robustness in regularizing the inverse problem. To be
more precise, let D € RnxK be an over complete
dictionary of K atoms (K>n), and suppose a signal x
€ Rn can be represented as a sparse linear
combination with respect to D.

II. RELATED WORKS

Quaternions

Quaternionic space, denoted as H, is an
extension of the complex space C using three
imaginary parts.A quaternion q H is defined as:

G =Ga + qpi + gei+ 94k with qa, gb, qc, qd R
and with the imaginary units defined as: i j=k, jk=i,
ki= j and i jk=i2 = j2 =k2 =—1. The quaternionic
space is characterized by its noncommutativity:
419274241 The scalar part is S(q)=ga, and the
vectorial part is V(q)=gbi+qc j +qdk. If its scalar part
is null, a quaternion is said to be pure and full
otherwise. The conjugate q is defined as:
rff'* = Slg) —Viq) and we have
(q192)" =434,

The shift-invariant case

The shift-invariant case, we want to sparsely
code the signal y as a sum of a few short structures,
named kernels, that are characterized independently
of their positions. This is usually applied to time
series data, and this model avoids the block effects in
the analysis of largely periodic signals, and provides
a compact kernel dictionary.

The spikegram for quaternionic
decompositions real coding coefficients xI,t are
displayed by a time-kernel representation called a
spikegram . This condenses three indications:

»  The temporal position t (abscissa),

»  The kernel index | (ordinate),

»  The coefficient amplitude xI,t (gray level of the
spike).

This presentation allows an intuitive readability of

the decomposition.With complex coefficients, the

coefficient modulus is used for the amplitude, and its

argument gives the angle, which is written next to the

spike.
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I1l. PROPOSED METHODOLOGY

The proposed model represents the color
image as a quaternion matrix, where a quaternion-
based dictionary learning algorithm is presented
using the K-quaternion singular value decomposition
(QSVD) (generalized K-means clustering for QSVD)
method. We will show that with the help of QSVD,
we can obtain a structured sparse representation
model and an effective dictionary learning algorithm
for color images. Algorithm for quaternion extension
in consideration of its high efficiency, to design the
QOMP (quaternion orthogonal matching pursuit)
algorithm. Because it has the same framework with
OMP, QOMP is still a greedy algorithm — the more
nonzero coefficients we obtain, the smaller
reconstruction residual we have.

IV. PROPOSED
PROCEDURE

METHODOLOGY

Quaternionic Orthogonal Matching Pursuit

It present the Q-OMP, the quaternionic
extension of the OMP. There are different
implementations of the OMP projection . In the
following, the block matrix inversion method is
extended. first the quaternionic space and notations
are outlined, and then detail the Q-OMP algorithm.

Algorithm 1: x = OMP (y, <)

1: initialization : k = 1. "=, dictionary =@
2: repeat

3 for m+— 1.M do

d: Inner Products : €5, + { £5=' gy, )

5 end for

6 Selection : m" « arg maxy, |C‘,‘,, |

7 Active Dictionary : DF « DF= U g x
|_1'—D“'.r

Active Coefficients : x* —arg min, .
Residue : &* +— v— Dk
ke—k+1

: until stopping criterion

=== = A

1
1
QUATERNIONI MATRIX

Quaternion matrix is a matrix whose
elements are quaternion’s.

Matrix operations

The quaternion’s form a non commutative
ring, and therefore addition and multiplication can be
defined for quaternion matrices as for matrices over
any ring.
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Addition.
The sum of two quaternion matrices A and B
is defined in the usual way by element-wise addition:

(.‘1 + B)’-J = _‘l,'j + B;J
Multiplication.

The product of two quaternion matrices A
and B also follows the usual definition for matrix
multiplication. For it to be defined, the number of
columns of A must equal the number of rows of B.
Then the entry in the ith row and jth column of the
product is the dot product of the ith row of the first
matrix with the jth column of the second matrix.
Specifically:

(_.‘13)” — Z -_L.isBs_j-

For example, for

T U1y U2 U1 ™o
U = , V= \
Uzy Uz Ug1 TUa2

the product is

UV = U1U11 + Ul Upi P12 + UpoU2
U V11 + Ugal21 Ui Uiz + Uzl

Since quaternion multiplication is non
commutative, care must be taken to preserve the
order of the factors when computing the product of
matrices. The identity for this multiplication is, as
expected, the diagonal matrix | = diag(, 1, ... , 1).
Multiplication follows the usual laws of associativity
and distributivity.

Determinants

There is no natural way to define a
determinant for (square) quaternion matrices so that
the values of the determinant are quaternion.[2]
Complex valued determinants can be defined
however.[3] The quaternion a + bi + cj + dkcan be
represented as the 2x2 complex matrix

a+bh c+di
—c+di a—m

This defines a map ¥mn from the m by n
quaternion matrices to the 2m by 2n complex
matrices by replacing each entry in the quaternion
matrix by its 2 by 2 complex representation. The

editor@istpublications.com

complex valued determinant of a square quaternion
matrix A is then defined as det(¥(A)). Many of the
usual laws for determinants hold; in particular, an n
by n matrix is invertible if and only if its determinant
is nonzero.

Color Image Reconstruction

The proposed sparse model is compared
with the other model for color image reconstruction.
The dataset for training consists of 50,000 image
sample patches of size 8x8, which are randomly
selected from a wide variety of animal images with
different scenes. Then the dictionaries using K-SVD
and K-QSVD separately on the same training
samples is trained. In order to keep a reasonable
computational complexity, both dictionaries are
relatively small with 256 atoms. To provide
comparison of our K-QSVD sparse model and Elad’s
K-SVD sparse model we randomly pick 20 images
and concatenate them as a full image for
reconstruction. We first compute the PSNR(dB)
values over different sparse parameter L for both
models.

The quaternion-based sparse model is able
to present higher PSNR values than the model in (24)
with the same sparse parameter. The advantage
becomes even greater with the increasing number of
atoms used. The number of atoms to be used under
the same PSNR is also compared. An interesting
phenomenon is observed that the advantage of K-
QSVD becomes even more obvious when more
atoms are allowed to be used. This is due to the lower
intra-redundancy between the channel components of
each atom and the lower inter-redundancy between
each pair of atoms in the quaternion-based dictionary.

Color Image Denoising

Another common application of sparse
representation is denoising. The denoising problem
can be formulated as the minimization
of the following objective function:

(D,3;.X) = min, ;{4 [|X-¥

+ Z# i |o + Z ‘l I-"“f.i — Ry X "i}
iJ Lf

-
~

a ‘.JI.

where _X" is the estimation of X", and the dictionary
_D" of size n x K is the estimation of the optimal
dictionary which leads to the sparsest representation
of the recovered image patches. The indices [i, j ]
mark the location of patches, thus Ri, j is the operator
extracting the Yn x \n square patch at coordinates [i,
j ] from X° , and the vector ai j of size K x1 is the
coefficient vectors for the patch at index [i, j ].

Page - 168



nternational Journal of Future Innovative Science and Technology, ISSN: 2454- 194X

@I Volume-2, Issue-2, May - 2016

The first term enforces the likelihood that demands
proximity between X' and Y" . The second and the
third terms impose the image prior, assuming each
quaternion patch can be sparsely represented without
noise over dictionary D" .

The solution is an extension with all algebra
operations in quaternion system, where the key part
for suppressing noise falls on the QOMP
implementation,

ming; |

5

which stops searching the best candidate atom once
the approximation reaches the sphere of radius.

Color Image Inpainting

Image inpainting refers to filling the missing
information in an image. Limited by the patch size,
the learning-based method can only handle small
holes. In this paper, we focus on filling missing areas
within the order of 30 pixels. We randomly choose
one full image which is damaged by randomly
deleting a fraction r of the pixels, usually r Our goal
is to re-fill them. The workflow of the proposed color
image inpainting:

We only consider the projections of non-
corrupted pixels onto dictionary in the QOMP
algorithm. The coefficient vector for each patch "p
can be estimated only on the non-corrupted pixels “Xp
using the pruned dictionary D° p by selecting
corresponding rows of D. The computed coefficient
vector “ap can be shared with those missing pixels,
considering its validity for the whole complete patch
block p. It should be noted that another vector sparse
representation model is proposed for color image
inpainting as well. However, that model requires a
channel (gray or color) to be available in advance for
estimating the missing channels. In other words, what
it does is colorization rather than inpainting.

Single Color Image Super Resolution

Single image super-resolution refers to the
process of obtaining higher-resolution (HR) images
X' H from one lower resolution (LR) image X L.
Current image super-resolution methods can be
divided into three categories: interpolation based
methods, reconstruction-based methods and example
based methods.
Among interpolation-based algorithms, bi-linear and
bi-cubic are most commonly used but tend to produce
blurry and jaggy artifacts. Reconstruction-based
methods require the consistency of up-sampled image
with the input LR image, where the HR-to-LR
degradation process is reversed by various kinds of
edge prior models. More recent researches have
focused on the third type, i.e., example-based
methods, which reconstruct the high frequency band

ajjllo. st [Day — Ry X3 < n(Co)?,
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of LR image using the provided example database.
The works exploited the raw patch information from
database, whereas our approach finds the sparse
representation of the example database, similar to the
approach.

V. CONCLUSION

This project propose a novel sparse model
for color image using quaternion matrix analysis. It
formulates a color pixel as a vector unit instead of a
scalar quantity and consequently overcomes the lack
of accuracy describing inter-relationship among color
channels. The experiments of reconstruction,
denoising, inpainting, and super-resolutionon natural
color images prove its advantages in effectively
accounting for both luminance and chrominance
geometry in images. Currently, the usage of the real
part of quaternion seems insufficient: for three-
channel color space, the real part is simply set to be
zero. We believe that the physically meaningful real
part will further help us capture color information. In
the future, we will further explore the potential
extension of quaternion sparse model to four channel
color space.
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