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ABSTRACT 

 

Sparse image models treat color image pixels as scalar, it represents color channels separately or concatenate 

color channels as a monochrome image. This paper proposes a novel sparse model for color image using 

quaternion matrix analysis. It represents color image pixels as quaternion matrix. The proposed model 

represents the color image as a quaternion matrix, where a quaternion-based dictionary learning algorithm is 

presented using the K-quaternion singular value decomposition (QSVD) (generalized K-means clustering for 

QSVD) method. It conducts the sparse basis selection in quaternion space, which uniformly transforms the 

channel images to an orthogonal color space. In this new color space, it is significant that the inherent color 

structures can be completely preserved during vector reconstruction. Moreover, the proposed sparse model is 

more efficient comparing with the current sparse models for image restoration tasks due to lower redundancy 

between the atoms of different color channels. The experimental results demonstrate that the proposed sparse 

image model avoids the hue bias issue successfully and shows its potential as a general and powerful tool in 

color image analysis and processing domain. 

 

Keywords— Vector sparse representation, quaternion matrix analysis, color image, dictionary learning, K-QSVD, 

image restoration. 

 

I. INTRODUCTION 

Super-resolution (SR) image reconstruction 

is currently a very active area of research, as it offers 

the promise of overcoming some of the inherent 

resolution limitations of low-cost imaging 

sensors(e.g. cell phone or surveillance cameras) 

allowing better utilization of the growing capability 

of high-resolution displays (e.g. high-definition 

LCDs). Such resolution-enhancing technology may 

also prove to be essential in medical imaging and 

satellite imaging where diagnosis or analysis from 

low-quality images can be extremely difficult. 

Conventional approaches to generating a super-

resolution image normally require as input multiple 

low-resolution images of the same scene, which are 

aligned with sub-pixel accuracy. The SR task is cast 

as the inverse problem of recovering the original 

high-resolution image by fusing the low-resolution 

images, based on reasonable assumptions or prior 

knowledge about the observation model that maps the 

high-resolution image to the low-resolution ones. The 

fundamental reconstruction constraint for SR is that 

the recovered image, after applying the same 

generation model, should reproduce the observed low 

resolution images. However, SR image 

reconstruction is generally a severely ill-posed 

problem because of the insufficient number of low 

resolution images, ill-conditioned registration and 

unknown blurring operators, and the solution from 

the reconstruction constraint is not unique. While 

simple interpolation methods such as Bilinear or 

Bicubic interpolation tend to generate overly smooth 

images with ringing and jagged artifacts, 

interpolation by exploiting the natural image priors 

will generally produce more favorable results. 

However, they are limited in modeling the visual 

complexity of the real images. 

 

For natural images with fine textures or 

smooth shading, these approaches tend to produce 

watercolor-like artifacts. A third category of SR 

approach is based on machine learning techniques, 

which attempt to capture the co-occurrence prior 

between low-resolution and high-resolution image 

patches. 
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This approach is motivated by recent results 

in sparse signal representation, which suggest that the 

linear relationships among high-resolution signals 

can be accurately recovered from their low-

dimensional projections. Although the super-

resolution problem is very ill-posed, making precise 

recovery impossible, the image patch sparse 

representation demonstrates both effectiveness and 

robustness in regularizing the inverse problem. To be 

more precise, let D ∈ Rn×K be an over complete 

dictionary of K atoms (K>n), and suppose a signal x 

∈ Rn can be represented as a sparse linear 

combination with respect to D. 

 

II. RELATED WORKS 
 

Quaternions 

Quaternionic space, denoted as H, is an 

extension of the complex space C using three 

imaginary parts.A quaternion q H is defined as:

, with qa, qb, qc, qd R 

and with the imaginary units defined as: i j=k, jk=i, 

ki= j and i jk=i2 = j2 =k2 =−1. The quaternionic 

space is characterized by its noncommutativity:

 The scalar part is S(q)=qa, and the 

vectorial part is V(q)=qbi+qc j +qdk. If its scalar part 

is null, a quaternion is said to be pure and full 

otherwise. The conjugate q is defined as: 

 and we have 

. 

 

The shift-invariant case 

The shift-invariant case, we want to sparsely 

code the signal y as a sum of a few short structures, 

named kernels, that are characterized independently 

of their positions. This is usually applied to time 

series data, and this model avoids the block effects in 

the analysis of largely periodic signals, and provides 

a compact kernel dictionary. 

 

The spikegram for quaternionic 

decompositions real coding coefficients xl,t are 

displayed by a time-kernel representation called a 

spikegram . This condenses three indications: 

 

• The temporal position t (abscissa), 

• The kernel index l (ordinate), 

• The coefficient amplitude xl,t (gray level of the 

spike). 

This presentation allows an intuitive readability of 

the decomposition.With complex coefficients, the 

coefficient modulus is used for the amplitude, and its 

argument gives the angle, which is written next to the 

spike.  

 

III. PROPOSED METHODOLOGY 

 

 The proposed model represents the color 

image as a quaternion matrix, where a quaternion-

based dictionary learning algorithm is presented 

using the K-quaternion singular value decomposition 

(QSVD) (generalized K-means clustering for QSVD) 

method.  We will show that with the help of QSVD, 

we can obtain a structured sparse representation 

model and an effective dictionary learning algorithm 

for color images.  Algorithm for quaternion extension 

in consideration of its high efficiency, to design the 

QOMP (quaternion orthogonal matching pursuit) 

algorithm. Because it has the same framework with 

OMP, QOMP is still a greedy algorithm — the more 

nonzero coefficients we obtain, the smaller 

reconstruction residual we have. 

 

IV. PROPOSED METHODOLOGY 

PROCEDURE 

 

Quaternionic Orthogonal Matching Pursuit 

 

It present the Q-OMP, the quaternionic 

extension of the OMP. There are different 

implementations of the OMP projection . In the 

following, the block matrix inversion method is 

extended. first the quaternionic space and notations 

are outlined, and then detail the Q-OMP algorithm. 

 

 

 

QUATERNIONI MATRIX 
 

Quaternion matrix is a matrix whose 

elements are quaternion’s. 

 

Matrix operations 
 

The quaternion’s form a non commutative 

ring, and therefore addition and multiplication can be 

defined for quaternion matrices as for matrices over 

any ring. 
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Addition. 

The sum of two quaternion matrices A and B 

is defined in the usual way by element-wise addition: 

 
 

Multiplication. 

 

The product of two quaternion matrices A 

and B also follows the usual definition for matrix 

multiplication. For it to be defined, the number of 

columns of A must equal the number of rows of B. 

Then the entry in the ith row and jth column of the 

product is the dot product of the ith row of the first 

matrix with the jth column of the second matrix. 

Specifically: 

 

For example, for 

 
the product is 

 

Since quaternion multiplication is non 

commutative, care must be taken to preserve the 

order of the factors when computing the product of 

matrices. The identity for this multiplication is, as 

expected, the diagonal matrix I = diag(1, 1, ... , 1). 

Multiplication follows the usual laws of associativity 

and distributivity. 

 

Determinants 

 

There is no natural way to define a 

determinant for (square) quaternion matrices so that 

the values of the determinant are quaternion.[2] 

Complex valued determinants can be defined 

however.[3] The quaternion a + bi + cj + dkcan be 

represented as the 2×2 complex matrix 

 

This defines a map Ψmn from the m by n 

quaternion matrices to the 2m by 2n complex 

matrices by replacing each entry in the quaternion 

matrix by its 2 by 2 complex representation. The 

complex valued determinant of a square quaternion 

matrix A is then defined as det(Ψ(A)). Many of the 

usual laws for determinants hold; in particular, an n 

by n matrix is invertible if and only if its determinant 

is nonzero. 

 

Color Image Reconstruction 

 

The proposed sparse model is compared  

with the other model for color image reconstruction. 

The dataset for training consists of 50,000 image 

sample patches of size 8×8, which are randomly 

selected from a wide variety of animal images with 

different scenes. Then the dictionaries using K-SVD 

and K-QSVD separately on the same training 

samples is trained. In order to keep a reasonable 

computational complexity, both dictionaries are 

relatively small with 256 atoms. To provide 

comparison of our K-QSVD sparse model and Elad’s 

K-SVD sparse model we randomly pick 20 images 

and concatenate them as a full image for 

reconstruction. We first compute the PSNR(dB) 

values over different sparse parameter L for both 

models. 

The quaternion-based sparse model is able 

to present higher PSNR values than the model in (24) 

with the same sparse parameter. The advantage 

becomes even greater with the increasing number of 

atoms used. The number of atoms to be used under 

the same PSNR is also compared. An interesting 

phenomenon is observed that the advantage of K-

QSVD becomes even more obvious when more 

atoms are allowed to be used. This is due to the lower 

intra-redundancy between the channel components of 

each atom and the lower inter-redundancy between 

each pair of atoms in the quaternion-based dictionary. 

 

Color Image Denoising 
Another common application of sparse 

representation is denoising. The denoising problem 

can be formulated as the minimization 

of the following objective function: 

 

where _X˙ is the estimation of X˙ , and the dictionary 

_D˙ of size n × K is the estimation of the optimal 

dictionary which leads to the sparsest representation 

of the recovered image patches. The indices [i, j ] 

mark the location of patches, thus Ri, j is the operator 

extracting the √n × √n square patch at coordinates [i, 

j ] from X˙ , and the vector ai j of size K ×1 is the 

coefficient vectors for the patch at index [i, j ]. 
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The first term enforces the likelihood that demands 

proximity between X˙ and Y˙ . The second and the 

third terms impose the image prior, assuming each 

quaternion patch can be sparsely represented without 

noise over dictionary _D˙ . 

The solution is an extension with all algebra 

operations in quaternion system, where the key part 

for suppressing noise falls on the QOMP 

implementation, 

 

which stops searching the best candidate atom once 

the approximation reaches the sphere of radius. 

 

Color Image Inpainting  
Image inpainting refers to filling the missing 

information in an image. Limited by the patch size, 

the learning-based method can only handle small 

holes. In this paper, we focus on filling missing areas 

within the order of 30 pixels. We randomly choose 

one full image which is damaged by randomly 

deleting a fraction r of the pixels, usually r Our goal 

is to re-fill them. The workflow of the proposed color 

image inpainting:  

 We only consider the projections of non-

corrupted pixels onto dictionary in the QOMP 

algorithm.  The coefficient vector for each patch ˙p 

can be estimated only on the non-corrupted pixels ˙xp 

using the pruned dictionary D˙ p by selecting 

corresponding rows of D. The computed coefficient 

vector ˙ap can be shared with those missing pixels, 

considering its validity for the whole complete patch 

block p. It should be noted that another vector sparse 

representation model is proposed for color image 

inpainting as well. However, that model requires a 

channel (gray or color) to be available in advance for 

estimating the missing channels. In other words, what 

it does is colorization rather than inpainting.  

 
Single Color Image Super Resolution  

Single image super-resolution refers to the 

process of obtaining higher-resolution (HR) images 

X˙ H from one lower resolution (LR) image X˙ L. 

Current image super-resolution methods can be 

divided into three categories: interpolation based 

methods, reconstruction-based methods and example 

based methods.  

Among interpolation-based algorithms, bi-linear and 

bi-cubic are most commonly used but tend to produce 

blurry and jaggy artifacts. Reconstruction-based 

methods require the consistency of up-sampled image 

with the input LR image, where the HR-to-LR 

degradation process is reversed by various kinds of 

edge prior models. More recent researches have 

focused on the third type, i.e., example-based 

methods, which reconstruct the high frequency band 

of LR image using the provided example database. 

The works exploited the raw patch information from 

database, whereas our approach finds the sparse 

representation of the example database, similar to the 

approach.  

 

V. CONCLUSION  
This project propose a novel sparse model 

for color image using quaternion matrix analysis. It 

formulates a color pixel as a vector unit instead of a 

scalar quantity and consequently overcomes the lack 

of accuracy describing inter-relationship among color 

channels. The experiments of reconstruction, 

denoising, inpainting, and super-resolutionon natural 

color images prove its advantages in effectively 

accounting for both luminance and chrominance 

geometry in images. Currently, the usage of the real 

part of quaternion seems insufficient: for three-

channel color space, the real part is simply set to be 

zero. We believe that the physically meaningful real 

part will further help us capture color information. In 

the future, we will further explore the potential 

extension of quaternion sparse model to four channel 

color space.  
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